多个样本均数比较.ppt
确定P值,作出推断结论:按水准,拒绝H0,接受H1,认为4个试验组ldl-c总体均数不等或不全相等,即不同剂量药物对血脂中ldl-c降低有影响。注意:方差分析的结果拒绝H0,接受H1,不能说明各组总体均数间两两都有差别。如果要分析哪些两组间有差别,可进行多个均数间的多重比较(见本章第六节)。当g=2时,完全随机设计方差分析与成组设计资料的t检验等价,有。第三节01随机区组设计资料的方差分析02(ANOVAofrandomizedblockdesigneddata)03一、随机区组设计
(randomizedblockdesign)随机区组设计(randomizedblockdesign)又称为配伍组设计,是配对设计的扩展。具体做法是:先按影响试验结果的非处理因素(如性别、体重、年龄、职业、病情、病程等)将受试对象配成区组(block),再分别将各区组内的受试对象随机分配到各处理或对照组。(1)随机分组方法:随机分配的次数要重复多次,每次随机分配都对同一个区组内的受试对象进行,且各个处理组受试对象数量相同。区组内均衡。在进行统计分析时,将区组变异离均差平方和从完全随机设计的组内离均差平和中分离出来,从而减小组内离均差平方和(误差平方和),提高了统计检验效率。(2)随机区组设计的特点例4-3如何按随机区组设计,分配5个区组的15只小白鼠接受甲、乙、丙三种抗癌药物?分组方法:先将小白鼠按体重编号,体重相近的3只小白鼠配成一个区组,见表4-6。在随机数字表中任选一行一列开始的2位数作为1个随机数,如从第8行第3列开始纪录,见表4-6;在每个区组内将随机数按大小排序;各区组中内序号为1的接受甲药、序号为2的接受乙药、序号为3的接受丙药,分配结果见表4-6。正态分布且方差齐同的资料,应采用两因素(处理、配伍)方差分析(two-wayANOVA)或配对t检验(g=2);当不满足方差分析和t检验条件时,可对数据进行变换或采用随机区组设计资料的FriedmanM检验。(3)统计方法选择:表4-7随机区组设计的试验结果二、变异分解(1)总变异:反映所有观察值之间的变异,记为SS总。(2)处理间变异:由处理因素的不同水平作用和随机误差产生的变异,记为SS处理。(3)区组间变异:由不同区组作用和随机误差产生的变异,记为SS区组.(4)误差变异:完全由随机误差产生的变异,记为SS误差。对总离均差平方和及其自由度的分解,有:表4-8随机区组设计资料的方差分析表三、分析步骤例4-4某研究者采用随机区组设计进行实验,比较三种抗癌药物对小白鼠肉瘤抑瘤效果,先将15只染有肉瘤小白鼠按体重大小配成5个区组,每个区组内3只小白鼠随机接受三种抗癌药物(具体分配方法见例4-3),以肉瘤的重量为指标,试验结果见表4-9。问三种不同的药物的抑瘤效果有无差别?表4-9不同药物作用后小白鼠肉瘤重量(g)H0:,即三种不同药物作用后小白鼠肉瘤重量的总体均数相等H1:三种不同药物作用后小白鼠肉瘤重量的总体均数不等或不全相等据?1=2、?2=8查附表3的F界值表,得在α=0.05的水准上,拒绝H0,接受H1,认为三种不同药物作用后小白鼠肉瘤重量的总体均数不全相等,即不同药物的抑瘤效果有差别。同理可对区组间的差别进行检验。注意:方差分析的结果拒绝H0,接受H1,不能说明各组总体均数间两两都有差别。如果要分析哪些两组间有差别,可进行多个均数间的多重比较(见本章第六节)。当g=2时,随机区组设计方差分析与配对设计资料的t检验等价,有。随机区组设计确定区组因素应是对试验结果有影响的非处理因素。区组内各试验对象应均衡,区组之间试验对象具有较大的差异为好,这样利用区组控制非处理因素的影响,并在方差分析时将区组间的变异从组内变异中分解出来。因此,当区组间差别有统计学意义时,这种设计的误差比完全随机设计小,试验效率得以提高。12(ANOVAoflatinsquaredesigneddata)拉丁方设计资料的方差分析第四节01欲比较一个处理因素中K个水平的各均数,同时要控制另外两个因素(控制因素)的作用,且每个因素类或水平数相等时,可用拉丁方设计。02用K个拉丁字母排列成K行K列的方阵,将两个控制因素分别安排在拉丁方设计的行和列上。使每行、每列中每个字母仅出现1次,这样的方阵称