文档详情

Excel在统计分析中的应用.ppt

发布:2017-06-21约7.69千字共69页下载文档
文本预览下载声明
* 方差分析 差异源 SS df MS F P-value F crit 行 177 3 59 78.66667 3.3E-05 4.757063 列 2.166667 2 1.083333 1.444444 0.307547 5.143253 误差 4.5 6 0.75 总计 183.6667 11         生长素处理大豆试验结果方差分析表 差异源 SS df MS F F0.05 F0.01 生长素间 177 3 59.0 78.67** 4.76 9.78 浸渍时间间 2.12 2 1.1 1.44 5.14 10.92 误差 4.5 6 0.75 总变异 183.7 11       整理后: * * 教材P157【例6-1】某食品感官评定时,测得食品甜度与蔗糖质量分数的关系如下表,试求y对x的直线回归方程。 七、直线回归与相关 某食品甜度与蔗糖质量分数 蔗糖质量分数x (%) 1.0 3.0 4.0 5.5 7.0 8.0 8.5 甜度y 15.0 18.0 19.0 21.0 22.6 23.8 26.0 输入格式 得回归方程为: * * * * * * * * * * * * * * 教材P79【例4-4】某食品厂在甲乙两条生产线上各测了30个日产量如下表,试检验两条生产线的平均日产量有无显著差异? 甲生产线(kg)(x1) 74 71 56 54 71 78 62 57 62 69 73 63 61 72 62 70 78 74 77 65 54 58 63 62 59 62 78 53 67 70 乙生产线(kg)(x1) 65 53 54 60 56 69 58 49 51 53 66 62 58 58 66 71 53 56 60 70 65 58 56 69 68 70 52 55 55 57 先用粘贴函数=VAR(数值)计算方差 输入格式单行或单列 将方差数值代入 用z-检验 推断……结论 * 六、方差分析 Analysis of Variance (一)单因素试验方差分析 【例6-1】以淀粉为原料生产葡萄糖过程中,残留的许多糖蜜可用于酱色生产。在生产酱色之前应尽可能彻底除杂,以保证酱色质量。为此对除杂方法进行选择。今选用5种除杂方法,每种方法做4次试验,试验结果见表5,试分析不同除杂方法的除杂效果有无差异?设各总体服从正态分布,且方差相等。 除杂方法(Ai) 除杂量(xij) A1 25.6 24.4 25.0 25.9 A2 27.8 27.0 27.0 28.0 A3 27.0 27.7 27.5 25.9 A4 29.0 27.3 27.5 29.9 A5 20.6 21.2 22.0 21.2 * * 工具 数据分析 方差分析:单因素方差分析 输入区域:$A$3:$E$7 分组方式:行 标志位于第1列:√ α :0.01 确定 * 注意:对照具体事例,汇总显著水平0.05和0.01两次计算结果,先将方差分析表做具体化修改完善。 F测验:F=49.55>F0.01(4,15)=4.89,所以,在显著性水平0.01下拒绝原假设H0,认为5种不同除杂方法的除杂效果有极显著差异。 但哪几个方法差异显著,哪几个方法差异不显著,尚需进一步进行多重比较分析,但Excel分析工具尚不能自动完成,无法完成最后结论表述,需手工完成多重比较。 * 1、两因素无重复试验的方差分析 【例6-2】某厂现有化验员3人,担任该厂牛奶酸度(°T)的检验。每天从牛奶中抽样一次进行检验,连续10天的检验分析结果见下表。试分析3名化验员的化验技术有无差异,以及每天的原料牛奶酸度有无差异。 化验员 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 A1 11.71 10.81 12.39 12.56 10.64 13.26 13.34 12.67 11.27 12.68 A2 11.78 10.7 12.5 12.35 10.32 12.93 13.81 12.48 11.6 12.65 A3 11.61 10.75 12.4 12.41 10.72 13.1 13.58 12.88 11.46 12.94 (二)两因素试验方差分析 * * 工具 数据分析 方差分析:无重复双因素 输入区域:$A$1:$D$5 标志:√ α :0.01 确定 继续手工完成结果推断和多重比较过程 * 表6-7 3种肥料施于3种土壤的小麦产量(g) 肥料种类 (
显示全部
相似文档