文档详情

高三_排列组合复习.ppt

发布:2018-05-28约5.27千字共32页下载文档
文本预览下载声明
排列、组合复习课 一、基本内容 1、两个原理: ①分类计数加法原理(加法原理):完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有mn种不同的方法,那么完成这件事共有N= m1+ m2 +…..+ mn种不同的方法. ②分步计数乘法原理(乘法原理):完成一件事需要 n个步骤,做第1步有m1种不同的方法,做第2 步有m2种不同的方法, ……做第n步有mn种不 同的方法,那么完成这件事共有N= m1× m2 ×.…..× mn种不同的方法.  ③两个原理的区别:前者各种方法相互独立,用其中的任何一种方法都可以完成这件事;后者每个步骤相互依存,只有每个步骤都完成了,这件事才算完成。对前者的应用,如何分类是关键,如排数时有0没有0,排位时的特殊位置等;后者一般体现在先选后排。 ⒉排列与排列数 定义:一般地,从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用 表示. 有关公式: ⒊组合与组合数:  定义:一般地,从n个不同元素中取出m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合。所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用 表示。 有关公式: ⒋排列与组合的区别:前者先选出元素,再按一定的顺序排成一列,后者只要选出元素并成一组即可;两个排列相同当且仅当两个排列的元素完全相同,且元素的顺序也相同,如abc与acb是不同的排列;两个组合相同,只要元素完全相同,可从集合的观点来看,如{a,b,c}{a,c,b}是同一集合。 ⒌常用解题方法及适用题目类型  ⑴直接法:特殊元素法、特殊位置法(两者适用某一个或几个元素在指定的位置或不在指定的位置)、捆绑法(两个或两个以上的元素必须相邻)、插空法 (两个或两个以上的元素必须不相邻)、挡板法(相同的元素分成若干部分,每部分至少一个) ⑵间接法(排除法,正难则反的思想).  ⒍高考中考查的思想方法:  分类、分步、对称、逆向思维、 整体等. 例5、9人排成一行,下列情形分别有多少种排法?   ⑴甲不站排头,乙不站排尾 ⑵甲乙必须排在一起,丙丁不能排在一起 ⑶甲乙丙从左到右排列(固定顺序问题) 分析: 引申:有三人从左到右顺序一定 ⑷前排三人,中间三人,后排三人 分析: ⑸分成甲、乙、丙三组,甲组4人,乙组3人,丙组2人。 分析: ⑹分成三组,每组3人 分析: 例8、高二(1)班从7人中选4人组成4×100m接力赛其中甲乙二人不跑中间两棒,有多少种选法? 例9、从正方体的6个面中任选3个,其中2个面不相邻的选法有多少种? 练习:(南通一检)一个三位数,其十位上的数字既小于百位上的数字也小于个位上的数字(如735,414等),那么这样的三位数有   个. 三、小结 本节课,我们对有关排列组合的几种常见的基本解法加以复习巩固。排列组合历来是学习中的难点,通过我们平时做的历届高考题,不难发现其应用题的特点是条件隐晦,难以挖掘,题目多变,解法独特,数字庞大,难以验证。同学们只有对基本的几种解法熟练掌握,然后再本着先分类再分步的原则,把复杂的问题简单化,才能做到举一反三,触类旁通,进而为下一章概率的学习打下坚实的基础。 练习1 某人射击8枪,命中4枪,那么命中的4枪中恰有3枪是连中的情形有几种? 练习2 一排8个座位,3人去坐,每人两边至少有一个空座的坐法有多少种? 练习3 马路上有编号为1,2,3,……10的十只路灯,为节约电而不影响照明,可以把其中的三只路灯关掉,但不能同时关掉相邻的两只或三只,也不能关掉马路两端的灯,问满足条件的关灯方法有多少种? 练习4 A、B、C、D、E五人站成一排,如果B必须站在A的右边,那么不同的站法有多少种? 练习5 某电路有5个串联的电子元件,求发生故障的不同情形数目? (A52) (A43) (C63) (A55/2) (25—1=31) * * 例1 学校组织老师学生一起看电影,同一排电影票12张。8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同的坐法? 解 先排学生共有A88 种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有 A74种选法.根据乘法原理,共有的不同坐法为A88A74 种. 结论1 插空法:对于某两个元素或者
显示全部
相似文档