文档详情

基于声辐射力的超声弹性成像方法研究-控制科学与工程专业论文.docx

发布:2019-03-27约6.73万字共71页下载文档
文本预览下载声明
万方数据 万方数据 Classified Index: R445.1 U.D.C: 616 Dissertation for the Master Degree in Engineering RESEARCH ON THE ULTRASOUND ELASTICITY IMAGING BASED ON ACOUSTIC RADIATION FORCE Candidate: Li Mucong Supervisor: Professor Feng Naizhang Academic Degree Applied for: Master of Engineering Speciality: Control Science and Engineering Affiliation: School of Information and Electrical Engineering Date of Defence: July, 2014 Degree-Conferring-Institution: Harbin Institute of Technology 哈尔滨工业大学工学硕士学位论文 哈尔滨工业大学工学硕士学位论文 摘 要 为了能够更精确地诊断出人体器官的组织硬度,超声弹性成像方法作为传 统 B 超成像的一个补充诊疗手段,在其产生不到 20 年的时间里,已有了飞速 的发展,这其中最令人瞩目的是近年来发展出的基于声辐射力的弹性成像方法。 相比于其它弹性成像方法,其具有可定量,探测深度深,可重复性高等特性, 已成为未来发展的趋势。 本文首先从脉冲声辐射力成像方法的研究开始,推导了超声探头形成的声 场与其引起的辐射力之间的函数关系,并在 FIELD II 中对其进行了仿真。同时, 在 HyperMesh 中建立了组织的有限元模型并讨论了其载荷施加及求解条件。 在一维剪切波成像方面,通过在剪切波传播方向上设置多个标记点,并记 录波峰通过该点的时刻的方法估算出一维剪切波波速,即峰值时间方法。引入 超声互相关算法可对组织位移进行估计,实现剪切波跟踪并计算剪切波波速, 最终得到组织硬度估计,但估计精确度不够高。针对此问题,本文进行深入分 析,结合支持向量机插值方法的优点,提出了基于支持向量回归的剪切波波速 估计方法,并通过仿真进行验证。 在一维剪切成像的基础上,本文深入分析了二维剪切成像方法,讨论了能 够进行完整二维弹性成像的条件。利用该方法,本文分别在各向同性与各向异 性的组织模型中施加连续的超声辐射力,形成两列准平面剪切波,观察组织位 移响应并估计剪切波波速。最后针对二维剪切波波速估计精度较低的问题,讨 论了影响剪切波波速估计精度的几个因素。 关键词:超声弹性成像;声辐射力;有限元方法;剪切波波速 - I - Abstract To measure the tissue stiffness of human organs more accurately, ultrasound elasticity imaging, a complementary method for B-mode ultrasound, has been developed rapidly during less than 20 years and a variety of modalities have come out. Among those, the most remarkable one is the acoustic radiation force based elasticity imaging which has been developed in recent years. Compared with other imaging modalities, it has become an important trend of future for its unique features of quantitation, deep detecting and high repeatability. This study is started from the research on impulsive acoustic radiation force imaging, during which the functional relationship between the acoustic field produced by ultrasonic probe and the radiation forces caused by this field are derived, and the simulation is realized by using FI
显示全部
相似文档