云南省丘北县第一中学2024年高三第五次模拟考试数学试卷含解析.doc
云南省丘北县第一中学2024年高三第五次模拟考试数学试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若函数的图象如图所示,则的解析式可能是()
A. B. C. D.
2.已知双曲线的实轴长为,离心率为,、分别为双曲线的左、右焦点,点在双曲线上运动,若为锐角三角形,则的取值范围是()
A. B. C. D.
3.执行如图所示的程序框图,若输出的结果为3,则可输入的实数值的个数为()
A.1 B.2 C.3 D.4
4.已知,且,则在方向上的投影为()
A. B. C. D.
5.已知复数,,则()
A. B. C. D.
6.若双曲线的渐近线与圆相切,则双曲线的离心率为()
A.2 B. C. D.
7.已知集合,,则()
A. B.
C. D.
8.设α,β为两个平面,则α∥β的充要条件是
A.α内有无数条直线与β平行
B.α内有两条相交直线与β平行
C.α,β平行于同一条直线
D.α,β垂直于同一平面
9.已知,,那么是的()
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
10.已知某口袋中有3个白球和个黑球(),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是.若,则=()
A. B.1 C. D.2
11.为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复.若该市老年低收入家庭共有900户,则下列说法错误的是()
A.该市总有15000户低收入家庭
B.在该市从业人员中,低收入家庭共有1800户
C.在该市无业人员中,低收入家庭有4350户
D.在该市大于18岁在读学生中,低收入家庭有800户
12.已知复数和复数,则为
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知圆柱的两个底面的圆周在同一个球的球面上,圆柱的高和球半径均为2,则该圆柱的底面半径为__________.
14.已知f(x)为偶函数,当x≤0时,f(x)=e-x-1-x,则曲线y=f(x)
15.若点为点在平面上的正投影,则记.如图,在棱长为1的正方体中,记平面为,平面为,点是线段上一动点,.给出下列四个结论:
①为的重心;
②;
③当时,平面;
④当三棱锥的体积最大时,三棱锥外接球的表面积为.
其中,所有正确结论的序号是________________.
16.在中,角的对边分别为,且,若外接圆的半径为,则面积的最大值是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,已知椭圆的中心为坐标原点焦点在轴上,右顶点到右焦点的距离与它到右准线的距离之比为.
(1)求椭圆的标准方程;
(2)若是椭圆上关于轴对称的任意两点,设,连接交椭圆于另一点.求证:直线过定点并求出点的坐标;
(3)在(2)的条件下,过点的直线交椭圆于两点,求的取值范围.
18.(12分)已知正实数满足.
(1)求的最小值.
(2)证明:
19.(12分)已知椭圆的短轴长为,左右焦点分别为,,点是椭圆上位于第一象限的任一点,且当时,.
(1)求椭圆的标准方程;
(2)若椭圆上点与点关于原点对称,过点作垂直于轴,垂足为,连接并延长交于另一点,交轴于点.
(ⅰ)求面积最大值;
(ⅱ)证明:直线与斜率之积为定值.
20.(12分)已知数列满足,且.
(1)求证:数列是等差数列,并求出数列的通项公式;
(2)求数列的前项和.
21.(12分)如图,在直棱柱中,底面为菱形,,,与相交于点,与相交于点.
(1)求证:平面;
(2)求直线与平面所成的角的正弦值.
22.(10分)设函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)如果对所有的≥0,都有≤,求的最小值;
(Ⅲ)已知数列中,,且,若数列的前n项和为,求证:
.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【解析】
由函数性质,结合特殊值验证,通过排除法求得结果.
【详解】
对于选项B,为奇函数可判断B错误;
对于选项C,当时,,可判断C错误;
对于选项D,,可知函数在第一象限的图象无增区间,故D错误;
故选:A.
【