文档详情

人教版数学必修4知识点强烈推荐.doc

发布:2018-05-07约4.87千字共11页下载文档
文本预览下载声明
高中数学 必修4知识点 第一章 三角函数 2、角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在轴上的角的集合为 终边在轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角终边相同的角的集合为 4、长度等于半径长的弧所对的圆心角叫做弧度. 5、半径为的圆的圆心角所对弧的长为,则角的弧度数的绝对值是. 6、弧度制与角度制的换算公式:,,. 7、若扇形的圆心角为,半径为,弧长为,周长为,面积为,则,,. 8、设是一个任意大小的角,的终边上任意一点的坐标是,它与原点的距离是,则,,. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正, 第三象限正切为正,第四象限余弦为正. 10、三角函数线:,,. 11、角三角函数的基本关系:;..(3) 倒数关系: 12、函数的诱导公式: ,,. ,,. ,,. ,,. 口诀:函数名称不变,符号看象限. ,.,. 口诀:正弦与余弦互换,符号看象限. 13、①的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象. ②数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数 的图象;再将函数的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象. 14、函数的性质: ①振幅:;②周期:;③频率:;④相位:;⑤初相:. 函数,当时,取得最小值为 ;当时,取得最大值为,则,,. 15、正弦函数、余弦函数和正切函数的图象与性质: y=cotx 图象 定义域 值域 最值 当时,;当 时,. 当时, ;当 时,. 既无最大值也无最小值 既无最大值也无最小值 周期性 奇偶性 奇函数 偶函数 奇函数 奇函数 单调性 在 上是增函数;在 上是减函数. 在上是增函数;在 上是减函数. 在 上是增函数. 对称性 对称中心 对称轴 对称中心 对称轴 对称中心 无对称轴 对称中心 无对称轴 第二章 平面向量 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为的向量. 单位向量:长度等于个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:. ⑷运算性质:①交换律:; ②结合律:;③. ⑸坐标运算:设,,则. 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设,,则. 设、两点的坐标分别为,,则. 19、向量数乘运算: ⑴实数与向量的积是一个向量的运算叫做向量的数乘,记作. ①; ②当时,的方向与的方向相同;当时,的方向与的方向相反;当时,. ⑵运算律:①;②;③. ⑶坐标运算:设,则. 20、向量共线定理:向量与共线,当且仅当有唯一一个实数,使. 设,,其中,则当且仅当时,向量、共线. 21、平面向量基本定理:如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使.(不共线的向量、作为这一平面内所有向量的一组基底) 22、分点坐标公式:设点是线段上的一点,、的坐标分别是,,当时,点的坐标是.(当 23、平面向量的数量积: ⑴.零向量与任一向量的数量积为. ⑵性质:设和都是非零向量,则①.②当与同向时,;当与反向时,;或.③. ⑶运算律:①;②;③. ⑷坐标运算:设两个非零向量,,则. 若,则,或. 设,,则. 设、都是非零向量,,,是与的夹角,则. 知识链接:空间向量 空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳. 1、直线的方向向量和平面的法向量 上的任意两点,则为直线的一个方向向量;与平行的任意非零向量也是直线的方向向量. ⑵.平面的法向量:   若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果那么向量叫做平面的法向量.待定系数法建立适当的坐标系. 设平面的法向量为. 求出平面内两个不共线向量的坐标. 根据法向量定义建立方程组. 解方程组,取其中一解,即得平面的法向量. (如图) 用向量方法判定空间中的平行关系 的方向向量分别
显示全部
相似文档