高三数学三垂线定理.ppt
关于高三数学三垂线定理47《立体几何-三垂线定理》第2页,共19页,2024年2月25日,星期天【教学目标】正确理解和熟练掌握三垂线定理及其逆定理,并能运用它解决有关垂直问题第3页,共19页,2024年2月25日,星期天【知识梳理】1.斜线长定理从平面外一点向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段也较长;②相等的斜线段的射影相等,较长的斜线段的射影也较长;③垂线段比任何一条斜线段都短.2.重要公式如图,已知OB?平面?于B,OA是平面?的斜线,A为斜足,直线AC?平面?,设?OAB=?1,又?CAB=?2,?OAC=?.那么cos?=cos?1?cos?2.C?DABO第4页,共19页,2024年2月25日,星期天【知识梳理】3.直线和平面所成的角①平面斜线与它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成的角中最小的角.②一个平面的斜线和它在这个平面内的射影的夹角,叫做斜线和平面所成的角(或斜线和平面的夹角).如果直线和平面垂直,那么就说直线和平面所成的角是直角;如果直线和平面平行或在平面内,那么就说直线和平面所成的角是0?的角.第5页,共19页,2024年2月25日,星期天【知识梳理】4.三垂线定理和三垂线定理的逆定理名称语言表述字母表示应用三垂线定理在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.①证两直线垂直②作点线距③作二面角的平面角三垂线定理的逆定理在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.同上第6页,共19页,2024年2月25日,星期天【知识梳理】重要提示三垂线定理和三垂线定理的逆定理的主要应用是证明两条直线垂直,尤其是证明两条异面直线垂直,此外,还可以作出点到直线的距离和二面角的平面角.在应用这两个定理时,要抓住平面和平面的垂线,简称“一个平面四条线,线面垂直是关键”.第7页,共19页,2024年2月25日,星期天【点击双基】1.下列命题中,正确的是 ()(A)垂直于同一条直线的两条直线平行(B)平行于同一平面的两条直线平行(C)平面的一条斜线可以垂直于这个平面内的无数条直线(D)a、b在平面外,若a、b在平面内的射影是两条相交直线,则a、b也是相交直线2.直线a、b在平面?内的射影分别为直线a1、b1,下列命题正确的是 ()(A)若a1?b1,则a?b (B)若a?b,则a1?b1(C)若a1??b1,则a与b不垂直 (D)若a??b,则a1与b1不垂直第8页,共19页,2024年2月25日,星期天【点击双基】3.直线a、b在平面外,若a、b在平面内的射影是一个点和不过此点的一条直线,则a与b是 ()(A)异面直线(B)相交直线(C)异面直线或相交直线(D)异面直线或平行直线4.P是△ABC所在平面外一点,若P点到△ABC各顶点的距离都相等,则P点在平面ABC内的射影是△ABC的 ()(A)外心(B)内心(C)重心(D)垂心5.P是△ABC所在平面外一点,若P点到△ABC各边的距离都相等,且P点在平面ABC内的射影在△ABC的内部,则射影是△ABC的 ()(A)外心(B)内心(C)重心(D)垂心第9页,共19页,2024年2月25日,星期天【点击双基】6.P是△ABC所在平面外一点,连结PA、PB、PC,若PA?BC,PB?AC,则P点在平面ABC内的射影是△ABC的 ()(A)外心(B)内心(C)重心(D)垂心7.从平面外一点向这个平面引两条斜线段,它们所成的角为?.这两条斜线段在平面内的射影成的角为?(90???180?),那么?与?的关系是 ()(A)??(B)??(C)???(D)???8.已知直线l1与平面?成30?角,直线l2与l1成60?角,则l2与平面?所成角的取值范围是 ()(A)[0?,60?](B)[60?,90?](C)[30?,90?](D)[0?,90?]第10页,共19页,2024年2月25日,星期天【典例剖析】例1.如果四面体的两组对棱互相垂直,求证第三组对棱也互相垂直.已知:四面体ABCD中,AB?CD,AD?BC;求证:AC?BD;DCOBAabC第11页,共19页,2024年2月25日,星期天【典例剖析】例2.如图,在三棱锥P?ABC中,?AC