组合ppt课件1(18张) 高中数学 人教A版 选修2-3.ppt
文本预览下载声明
* 复习巩固: 1、组合定义: 一般地,从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合. 从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号 表示. 2、组合数: 3、组合数公式: 一个口袋内装有大小相同的7个白球和1个黑球. ⑴ 从口袋内取出3个球,共有多少种取法? ⑵ 从口袋内取出3个球,使其中含有1个黑球,有多少种取法? ⑶ 从口袋内取出3个球,使其中不含黑球,有多少种取法? ⑵ ⑶ 解:(1) 性质2 我们可以这样解释:从口袋内的8个球中所取出的3个球,可以分为两类:一类含有1个黑球,一类不含有黑球.因此根据分类计数原理,上述等式成立. 我们发现: 为什么呢 性质2 注:1? 公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与原组合数上标较大的相同的一个组合数. 2? 此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的主要应用. 例1 计算: 例2 求证: 一、等分组与不等分组问题 例3、6本不同的书,按下列条件,各有多少种不同的分法; (1)分给甲、乙、丙三人,每人两本; (2)分成三份,每份两本; (3)分成三份,一份1本,一份2本,一份3本; (4)分给甲、乙、丙3人,一人1本,一人2本,一人3本; (5)分给甲、乙、丙3人,每人至少一本; (6)分给5个人,每人至少一本; (7)6本相同的书,分给甲乙丙三人,每人至少一本。 练习: (1)今有10件不同奖品,从中选6件分成三份, 二份各1件,另一份4件, 有多少种分法? (2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件有多少种分法? 解: (1) (2) 例4、某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有( ) (A) 种(B) 种 (C) 种 (D) 种 二、不相邻问题插空法 三、混合问题,先“组”后“排” 例5 对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能? 解:由题意知前5次测试恰有4次测到次品,且第5次测试是次品。故有: 种可能。 练习:1、某学习小组有5个男生3个女生,从中选3名男生和1名女生参加三项竞赛活动,每项活动至少有1人参加,则有不同参赛方法______种. 解:采用先组后排方法: 2、3 名医生和 6 名护士被分配到 3 所学校为学生体检,每校分配 1 名医生和 2 名护士,不同的分配方法共有多少种? 解法一:先组队后分校(先分堆后分配) 解法二:依次确定到第一、第二、第三所学校去的医生和护士. 四、分类组合,隔板处理 例6、 从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法? 分析:问题相当于把个30相同球放入6个不同盒子(盒子不能空的)有几种放法?这类问可用“隔板法”处理. 解:采用“隔板法” 得: 练习: 1、将8个学生干部的培训指标分配给5个不同的班级,每班至少分到1个名额,共有多少种不同的分配方法? 2、从一楼到二楼的楼梯有17级,上楼时可以一步走一级,也可以一步走两级,若要求11步走完,则有多少种不同的走法? *
显示全部