文档详情

八年级上数学几何证明练习题.doc

发布:2019-08-07约1.96千字共3页下载文档
文本预览下载声明
八年级数学(上)几何证明练习题 已知:在⊿ABC中,∠A=900,AB=AC,在BC上任取一点P,作PQ∥AB交AC于Q,作PR∥CA交BA于R,D是BC的中点,求证:⊿RDQ是等腰直角三角形。 已知:在⊿ABC中,∠A=900,AB=AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证:∠ADB=∠FDC。 已知:在⊿ABC中BD、CE是高,在BD、CE或其延长线上分别截取BM=AC、CN=AB,求证:MA⊥NA。 4、已知:如图(1),在△ABC中,BP、CP分别平分∠ABC和∠ACB,DE过点P交AB于D,交AC于E,且DE∥BC.求证:DE-DB=EC. 5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。 (1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明); (2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。 A A B C O M N 6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD, 连结EC、ED,求证:CE=DE 7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。 几何证明习题答案 1. 连接AD,由△ABC为 等腰直角三角形可得AD垂直AC,且AD=BD,∠DAQ=∠DBR=45度, 又由平行关系得,四边形RPQA为矩形,所以AQ=RP, △BRP也是等腰直角三角行,即BR=PR,所以AQ=BR 由边角边,△BRD全等于△AQD,所以∠BDR=∠ADQ,DR=DQ, ∠RDQ=∠RDA+∠ADQ=∠RDA+∠BDR=90度, 所以△RDQ是等腰RT△。 2. 作AG平分∠BAC交BD于G ∵∠BAC=90° ∴∠CAG= ∠BAG=45° ∵∠BAC=90° AC=AB ∴∠C=∠ABC=45° ∴∠C=∠BAG ∵AE⊥BD ∴∠ABE+∠BAE=90° ∵∠CAF+∠BAE=90° ∴∠CAF=∠ABE ∵ AC=AB ∴△ACF ≌△BAG ∴CF=AG ∵∠C=∠DAG =45° CD=AD ∴△CDF ≌△ADG ∴∠CDF=∠ADB 3. 易证△ABM≌△NAC.∠NAM=∠NAE+∠BAM=∠NAE+ANE=90° 4. 略 5.(1)因为直角三角形的斜边中点是三角形的外心, 所以 O到△ABC的三个顶点A、B、C距离相等; (2)△OMN是 等腰直角三角形。 证明:连接OA,如图, ∵AC=AB,∠BAC=90°, ∴OA=OB,OA平分∠BAC,∠B=45°, ∴∠NAO=45°, ∴∠NAO=∠B, 在△NAO和△MBO 中, AN=BM ,∠NAO=∠B ,AO=BO , ∴△NAO≌ △MBO, ∴ON=OM,∠AON=∠BOM, ∵AC=AB,O是BC的中点, ∴AO⊥BC, 即∠BOM+∠AOM=90°, ∴∠AON+∠AOM=90°, 即∠NOM=90°, ∴△OMN是 等腰直角三角形. 6. 延长CD到F,使DF=BC,连结EF ∵AE=BD ∴AE=CF ∵△ABC为正三角形 ∴BE=BF ∠B=60° ∴△EBF为等边三角形 ∴角F=60° EF=EB 在△EBC和△EFD中 EB=EF(已证) ∠B=∠F(已证) BC=DF(已作) ∴△EBC≌△EFD(SAS) ∴EC=ED 7. 周长为10.
显示全部
相似文档