文档详情

a元次方程复习导学案.doc

发布:2017-04-07约7.69千字共10页下载文档
文本预览下载声明
一元二次方程复习导学案 课 前 小 测 试 1、若关于的方程有增根,则的值是(   )   A.3    B.2   C.1    D. 2、一元二次方程x2+kx-3=0的一个根是x=1,则另一个根是 (  )  A.3 B.-1 C.-3 D.-2 3、关于的一元二次方程的两个实数根分别是,且,则的值是( )    A.1 B.12  C.13 D.25 4、设,是一元二次方程的两个实数根,则的值为__________________. 5、某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为,可列方程为           . 6、学校组织一次有关世博的知识竞赛共有20道题,每小题答对得5分,答错或不答都倒扣1分,小明最终得76分,那么他答对   题. 7、已知关于的一元二次方程(为常数). (1)求证:方程有两个不相等的实数根; (2)设,为方程的两个实数根,且,试求出方程的两个实数根和的值. 8、“五一”黄金周期间,某学校计划组织385名师生租车旅游;现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元,若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金,请你帮助该学校选择一种最节省的租车方案。 一、知识点梳理: 一元二次方程概念: 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:,它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。 一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如的一元二次方程。根据平方根的定义可知,是b的平方根,当时,,,当b0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程的求根公式:   公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c 4、因式分解法(注意十字相乘法)   因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。   分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 一元二次方程根的判别式 根的判别式 一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即 I当△0时,一元二次方程有2个不相等的实数根; II当△=0时,一元二次方程有2个相同的实数根; III当△0时,一元二次方程没有实数根 一元二次方程根与系数的关系 1、如果方程的两个实数根为,那么。 如果方程的两个实数根是,那么,。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。 一元二次方程应用题经典题型 一、解应用题步骤: 1.审题; 2.设未知数,包括直接设未知数和间接设未知数两种; 3.找。找等量关系; 4. 列方程; 5.解。解方程; 6.验。判断解是否符合题意; 7.答。写出正确的解. (审——设——找——列——解——验——答) 商品销售问题 售价—进价=利润 单价×销售量=销售额 一件商品的利润×销售量=总利润 1、某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件? 2、某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30X,P=170—2X。 当日产量为多少时每日获得的利润为1750元? 若可获得的最大利润为1950元,问日产量应为多少? 行程问题 路程=速度*时间 相遇路程=速度和*
显示全部
相似文档