《仪器分析》课件第十章 极谱分析法.ppt
文本预览下载声明
电化学分析法:根据物质在溶液中所呈现的电化学性质及其变化而建立的分析方法。 三、 极谱分析法的发展概况 1922年,捷克学者海洛夫斯基(Heyrovsky)首先提出极谱分析法,开创了这一电分析化学的分支; 4.半波电位—E1/2 定义:极限扩散电流一半时滴汞电极的电位称为半波电位 三、极谱过程的特殊性 1. 电极的特殊性 2. 电解条件的特殊性 四、极谱分析法的特点 1. 较高的灵敏度。 第三节 极谱定量分析 一. 定量依据——尤考维奇方程 三、影响扩散电流的因素 2. 温度 3. 溶液组成 四.干扰电流及其消除方法 除扩散电流外,与待测组分无关的电解电流统称为干扰电流 2.迁移电流 3. 极谱极大 4. 氧波:普通极谱法中,氧是干扰最大的元素 ① 叠波 干扰电流及消除方法 残余电流可用作图法扣除; 第四节 极谱波的种类及极谱波方程式 一、可逆波与不可逆波 ???实际上,可逆波与不可逆波的区分不是绝对的.在一定条件下,可以相互转化.通常只要选择合适的底液,使不可逆波转换为可逆波或增加可逆性.通常不可逆波不便测量.且易受其它极谱波干扰(因波形延伸长),但其极限扩散电流同样与电活性物质成正比. id ∝ C 二、极谱波方程式 极谱波是电流与电位的关系曲线,它们之间的关系称为极谱波方程式。 1.简单金属离子的极谱波 Mn++ n e-+Hg = M(Hg) 2. 金属配离子的极谱波 金属离子形成配离子后,电极反应为 250c时: 结论一: 金属配离子比简单金属离子的半波电位更负,配合物越稳定、配位数越高、配体浓度越大,?1/2越负。 在一定条件下, (?1/2)C中前三项为常数: 三、半波电位的测定和可逆极谱波的判断 1.半波电位的测定 2. 可逆极谱波的判断 底液——含有支持电解质,除氧剂,配位剂, 缓冲溶液及极大抑制剂等。 其它干扰电流都要在实验中加入适当的试剂后分别予以消除,这些试剂统称为极谱分析的底液。 区别在于电极反应是否表现出明显的过电位. i Ede 1 2 A B C D E1/2 E1/2 ? ? ①可逆波 电极反应速率远比扩散的速率快的多,极谱波上任何一点的电流都受扩散速率控制,电流随着电位增大很快达到极限扩散电流,这样的极谱波叫可逆波. 没有表现出明显的过电位.能斯特公式完全适用. ②不可逆波 表现出明显的过电位.波形较长。 η= - E1/2 ? E1/2 极谱波方程式可以用来测定半波电位;研究反应机理等。 0 i (μA) E 金属离子在电极表面的浓度 金属在汞齐中的浓度 扩散电流 —— 极限扩散电流—— 由上两式相减得: 还原产物的浓度即金属在汞齐中的浓度与通过电流成正比: 在250C 时: Da—金属在汞齐中的扩散系数 Ka=607n Da1/2qm 2/3t1/6 Ks=607n Ds1/2qm 2/3t1/6 Ds—金属离子在溶液中的扩散系数 ?de及i为波上任意一点的相应数值 则: 当 i =1/2 id时, ?de为半波电位?1/2 ——简单金属离子的极谱波方程式 结论:在一定组分和浓度的底液中,任一物质的可逆极谱波的半波电位为一常数。 上述电极反应由下面两反应所组成: 根据: 形成常数— ML d K i i - = n x ML + 0 ] [ a K i M = 0 ] [ 2 / 1 2 / 1 a ML a ML D D K K = n x ML + 0 ] [ = M = 0 ] [ 一般来说: 与简单金属离子类似: 则: 由上式可知:配合物半波电位与配位剂的浓度、配离子的稳定常数以及配位数有关。 当i=id/2时,配合物半波电位: ——金属配离子的极谱波方程式 简单金属离子? 1/2 : 金属配离子?1/2 : 一般情况下, DML与Ds近似相等: 则: 结论二: 可测定配合物形成常数以及配位比。 若保持其它条件不变时,改变配位剂浓度测定相应的(?1/2)配 ,以(?1/2)配 对lgCL作图,可得一直线。 当n, x和配位剂浓度已知时,可求出配离子稳定常数 Kf。 斜率为0.059x/n,若知道n,可求出配位数x。 将?de对lg i/(id-i) 作图,得一直线。 直线的截距为?1/2 ;斜率为0.059/n * 电解质溶液 电位 电阻 电流 电量 电位法 电导法 极谱与伏安法 电解与库仑法 性质 方法 第十四章 极谱与伏安分析法 (Polarography ? voltammetry) 极谱分析法概述 定量分析基础——扩散电流方程式 定性分析原理——极谱波方程 极谱分析与实验技术 极谱和伏安法的发展 极谱分析基本原理
显示全部