哈工大概率论大作业.doc
文本预览下载声明
概率论大作业
——随机变量函数的引入和用法
班级:1137102
学号:1113710214
姓名:孙媛
指导教师:田波平
邮箱: HYPERLINK mailto:295223370@ 295223370@
目录
HYPERLINK \l _Toc280574357 随机变量函数的引入和用法 PAGEREF _Toc280574357 \h 1
HYPERLINK \l _Toc280574358 一、知识引言 PAGEREF _Toc280574358 \h 1
HYPERLINK \l _Toc280574359 1)随机变量 PAGEREF _Toc280574359 \h 1
HYPERLINK \l _Toc280574360 2)离散性随机变量 PAGEREF _Toc280574360 \h 2
HYPERLINK \l _Toc280574361 3)连续性随机变量 PAGEREF _Toc280574361 \h 2
HYPERLINK \l _Toc280574362 4) 联合分布函数和概率密度: PAGEREF _Toc280574362 \h 2
HYPERLINK \l _Toc280574363 二.随机变量的分布函数 PAGEREF _Toc280574363 \h 3
HYPERLINK \l _Toc280574364 三 概率分布综述 PAGEREF _Toc280574364 \h 5
HYPERLINK \l _Toc280574365 1.离散型随机变量的概率分布函数 PAGEREF _Toc280574365 \h 5
HYPERLINK \l _Toc280574366 2.连续性随机变量的分布函数 PAGEREF _Toc280574366 \h 7
HYPERLINK \l _Toc280574367 3 多维随机变量的联合概率分布 PAGEREF _Toc280574367 \h 9
HYPERLINK \l _Toc280574368 4 边缘分布函数 PAGEREF _Toc280574368 \h 10
HYPERLINK \l _Toc280574369 5分布函数和随机变量数字特征之间的关系 PAGEREF _Toc280574369 \h 12
HYPERLINK \l _Toc280574370 四 概率分布函数在实际生活中的应用 PAGEREF _Toc280574370 \h 12
HYPERLINK \l _Toc280574371 五 参考文献 PAGEREF _Toc280574371 \h 13
知识引言
随机现象存在于我们日常生活的方方面面和科学技术的各个领域,概率论与数理统计是一门十分重要的大学数学基础课,也是唯一一门研究随机现象规律的???科,它指导人们从事物表象看到其本质.它的实际应用背景很广,包括自然科学、社会科学、工程技术、经济、管理、军事和工农业生产等领域.经过不断的发展,学科本身的理论和方法日趋成熟,近年来,概率统计知识也越来越多的渗透到诸如物理学、遗传学、信息论等学科当中.另外,在社会生活中,就连面试、赌博、彩票、体育和天气等等也都会涉及到概率学知识.可以说,概率统计是当今数学中最活跃,应用最广泛的学科之一。
1)随机变量
随着经济的不断发展,随机变量分布在金融、保险和精算领域中的应用也越来越广泛,因此对于随机变量的理论研究也非常的重要。而许多现象是与数值发生关系的,由于我们处理的是随机现象,因而这些数值的变化也呈现出随机性,这就是随机变量的直观意义。
定义 设E是一个随机试验,是其样本空间,我们称上的一个实值函数
为随机变量,如果对于任意的实数, 都是随机事件.
关于随机变量,我们要作如下几点说明:
⑴.一般地,随机变量用大写的英文字母等,或用希腊字母等来表示;用小写的英文字母表示随机变量的取值.
⑵.对于随机变量,由于它是样本空间上的函数,因此它的“定义域”是非常清楚的,我们关心的是随机变量的值域,即关心随机变量的取值.我们通过随机变量的取值状况来描述随机事件.
⑶.在同一个样本空间上,可以定义不同的随机变量.
2)离散性随机变量
离散型随机变量在某一范围内的取值的概率等于它取这个范围内各个值的概率。
定义:如果随机变量X只可能取有限个或至多可列个值,则称X为离散型随机变量。
3)连续性随机变量
定
显示全部