文档详情

直角三角形三角函数.doc

发布:2017-04-21约2.09千字共4页下载文档
文本预览下载声明
PAGE  PAGE 4 1.(2012江苏泰州)如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是 . 2. (2014?泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是(  )  A.1,2,3B.1,1,C.1,1,D.1,2,3.(2014?德州)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1: 2,则斜坡AB的长为(  )  A.4米B.6米C.12米D.24米4. (2014?扬州)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=(  ) A.3B.4C.5D.6   5. ( 2014?安徽省)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为(   )   A. B. C. 4 D.5 6.(2014年山东泰安)如图①是一个直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为( )  A.cm B. 2cm C. 2cm D. 3cm 7.(2014?毕节)如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为( )  A.1B.C.3D.8.(2014?四川自贡)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为( )  A.B.C.D.9.(2014年山东泰安)如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为(  )  A.6 B. 7 C. 8 D. 10 10. ( 2014?广西)如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E= . 11. (2014?泰州)如图,正方向ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于  cm. 12.(2014?襄阳)如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度 为   m(结果保留根号) 13. (2014?泰州)如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥AC. (1)求证:BE=AF; (2)若∠ABC=60°,BD=6,求四边形ADEF的面积. 14. (2014?扬州)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处. (1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA. ①求证:△OCP∽△PDA; ②若△OCP与△PDA的面积比为1:4,求边AB的长; (2)若图1中的点P恰好是CD边的中点,求∠OAB的度数; (3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度. 15.(2014?浙江宁波)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A???B两地之间修建一条笔直的公路. (1)求改直的公路AB的长; (2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75) 16. (江苏省)如图,在航线的两侧分别有观测点A和B,点A到航线的距离为2km,点B位于点A北偏东60°方向且与A相距10km处.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5min后该轮船行至点A的正北方向的D处. (1)求观测点B到航线的距离; (2)求该轮船航行的速度(结果精确到0.1km/h).(参考数据:,,, 17.(2013年江苏泰州)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测
显示全部
相似文档