云南省石林彝族自治县民族中学2024年招生全国统一考试猜题卷(二)数学试题试卷.doc
云南省石林彝族自治县民族中学2024年招生全国统一考试猜题卷(二)数学试题试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.等差数列中,,,则数列前6项和为()
A.18 B.24 C.36 D.72
2.已知无穷等比数列的公比为2,且,则()
A. B. C. D.
3.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中左视图中三角形为等腰直角三角形,则该几何体外接球的体积是()
A. B.
C. D.
4.《普通高中数学课程标准(2017版)》提出了数学学科的六大核心素养.为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是()
A.甲的数据分析素养高于乙
B.甲的数学建模素养优于数学抽象素养
C.乙的六大素养中逻辑推理最差
D.乙的六大素养整体平均水平优于甲
5.元代数学家朱世杰的数学名著《算术启蒙》是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若,,则输出的()
A.3 B.4 C.5 D.6
6.已知抛物线:,直线与分别相交于点,与的准线相交于点,若,则()
A.3 B. C. D.
7.设a,b都是不等于1的正数,则“”是“”的()
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
8.已知正方体的棱长为2,点在线段上,且,平面经过点,则正方体被平面截得的截面面积为()
A. B. C. D.
9.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为.给出下列四个结论:
①曲线有四条对称轴;
②曲线上的点到原点的最大距离为;
③曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为;
④四叶草面积小于.
其中,所有正确结论的序号是()
A.①② B.①③ C.①③④ D.①②④
10.在中,是的中点,,点在上且满足,则等于()
A. B. C. D.
11.已知函数若恒成立,则实数的取值范围是()
A. B. C. D.
12.设,,则的值为()
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数,对于任意都有,则的值为______________.
14.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为____;若该六面体内有一球,则该球体积的最大值为____.
15.正方体中,是棱的中点,是侧面上的动点,且平面,记与的轨迹构成的平面为.
①,使得;
②直线与直线所成角的正切值的取值范围是;
③与平面所成锐二面角的正切值为;
④正方体的各个侧面中,与所成的锐二面角相等的侧面共四个.
其中正确命题的序号是________.(写出所有正确命题的序号)
16.若函数的图像与直线的三个相邻交点的横坐标分别是,,,则实数的值为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,曲线的参数方程为:(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:.
(1)求曲线的极坐标方程和曲线的直角坐标方程;
(2)若直线与曲线交于,两点,与曲线交于,两点,求取得最大值时直线的直角坐标方程.
18.(12分)已知数列的前项和为,且满足.
(1)求数列的通项公式;
(2)若,,且数列前项和为,求的取值范围.
19.(12分)如图,在多面体中,四边形是菱形,,,,平面,,,是的中点.
(Ⅰ)求证:平面平面;
(ⅠⅠ)求直线与平面所成的角的正弦值.
20.(12分)某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设