文档详情

第8章--MATLAB数值微积分与最优化.ppt

发布:2018-02-16约7.1千字共35页下载文档
文本预览下载声明
例4 1.先建立M文件fun.m定义目标函数: function f=fun(x); f=-2*x(1)-x(2); 2.再建立M文件mycon2.m定义非线性约束: function [g,ceq]=mycon2(x) g=[x(1)^2+x(2)^2-25;x(1)^2-x(2)^2-7]; ceq=[];  3. 主程序fxx.m为: x0=[3;2.5]; VLB=[0 0];VUB=[5 10]; [x,fval,exitflag,output] =fmincon(fun,x0,[],[],[],[], VLB,VUB,mycon2) 4. 运算结果为: x = 4.0000 3.0000 fval =-11.0000 exitflag = 1 output = iterations: 4 funcCount: 17 stepsize: 1 algorithm: [1x44 char] firstorderopt: [] cgiterations: [] 更多函数, 参见optimization 工具箱说明档。 第8章 数值微积分与最优化 8.1 数值积分 8.2 数值微分 8.3 数值最优化 8.1 数值积分 8.1.1 数值积分基本原理 求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,n,其中x1=a,xn+1=b。这样求定积分问题就分解为求和问题。 8.1.2 数值积分的实现方法 1.变步长辛普生法 基于变步长辛普生法,MATLAB给出了quad函数来求定积分。该函数的调用格式为: [I,n]=quad(fname,a,b,tol,trace) 其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即定积分值,n为被积函数的调用次数。 例8-1 求定积分。 (1) 建立被积函数文件fesin.m。 function f=fesin(x) f=exp(-0.5*x).*sin(x+pi/6); (2) 调用数值积分函数quad求定积分。 [S,n]=quad(fesin,0,3*pi) S = 0.9008 n = 77 2.牛顿-柯特斯法 基于牛顿-柯特斯法,MATLAB给出了quad8函数来求定积分。该函数的调用格式为: [I,n]=quad8(fname,a,b,tol,trace) 其中参数的含义和quad函数相似,只是tol的缺省值取10-6。该函数可以更精确地求出定积分的值,且一般情况下函数调用的步数明显小于quad函数,从而保证能以更高的效率求出所需的定积分值。 例8-2 求定积分。 (1) 被积函数文件fx.m。 function f=fx(x) f=x.*sin(x)./(1+cos(x).*cos(x)); (2) 调用函数quad8求定积分。 I=quad8(fx,0,pi) I = 2.4674 例8-3 分别用quad函数和quad8函数求定积分的近似值,并在相同的积分精度下,比较函数的调用次数。 调用函数quad求定积分: format long; fx=inline(exp(-x)); [I,n]=quad(fx,1,2.5,1e-10) I = 0.28579444254766 n = 65 调用函数quad8求定积分: format long; fx=inline(exp(-x)); [I,n]=quad8(fx,1,2.5,1e-10) I = 0.28579444254754 n = 33 3.被积函数由一个表格定义 在MATLAB中,对由表格形式定义的函数关系的求定积分问题用trapz(X,Y)函数。其中向量X,Y定义函数关系Y=f(X)。 例8-4 用trapz函数计算定积分。 命令如下: X=1:0.01:2.5; Y=exp(-X); %生成函数关系数据向量 trapz(X,Y) ans = 0.2857
显示全部
相似文档