2-(v,k,1)设计的可解线-传递自同构群的开题报告.docx
2-(v,k,1)设计的可解线-传递自同构群的开题报告
Introduction
Thestudyofintegralandlineardesignsisanimportantfieldofcombinatoricsanddesigntheory.Integraldesignsareaclassofcombinatorialdesignsthatcanbeusedinvariousapplicationssuchaserror-correctingcodes,cryptography,andcommunicationsystems.Lineardesigns,ontheotherhand,areasubclassofintegraldesignsthathaveadditionalpropertiesrelatedtolinearcodesanderror-correctingcapabilities.
Inthisreport,wewillfocusonthestudyof2-(v,k,1)designs,whichareaspecifictypeofintegraldesignwithinterestingproperties.Wewillalsodiscusstheconceptofself-embeddingandself-isomorphism,whichareimportantconceptsindesigntheory.Finally,wewillpresentsomeresultsonthesolvabilityandtransitivityofself-isomorphic2-(v,k,1)designs.
2-(v,k,1)Designs
A2-(v,k,1)designisacollectionofk-elementsubsetsofav-elementsetsuchthateachpairofelementsiscontainedinexactlyonesubset.Inotherwords,a2-(v,k,1)designisasetofmutuallyorthogonalLatinsquaresoforderv.
Theconceptof2-(v,k,1)designsiscloselyrelatedtotheconceptoffinitegeometries,wherepointsarerepresentedbyelementsofasetandlinesarerepresentedbysubsetsofthatset.Infact,everyfiniteprojectivegeometrycanberepresentedasa2-(v,k,1)design.
Oneimportantpropertyof2-(v,k,1)designsisthattheyaresymmetric,meaningthateverytwopointsofthedesignoccurinexactlythesamenumberofblocks.Thispropertyhasimportantconsequencesforthesymmetryoftheautomorphismgroupofthedesign.
Self-embeddingandSelf-isomorphism
AdesignDissaidtobeself-embeddingifthereexistsaninjectivefunctionfromthesetofpointsofDtothesetofblocksofDthatpreservestheincidencerelation.Inotherwords,thisfunctionmapseachpointtoablockthatcontainsit,andeachblocktoasetofpointsthatitcontains.
AdesignDissaidtobeself-isomorphic