2019电大数学与应用数学复变函数练习试题.doc
文本预览下载声明
PAGE
PAGE 5
一、单项选择题
1.设,则可用表示为( ).
(A) (B) (C) (D)
2.若,则上半平面可表示为( ).
(A) (B) (C) (D)
3.( ).
(A) (B) (C) (D)
4.函数在复平面上可表示为( ).
(A) (B) (C) (D)
5.设,则为的( ).
(A) 一级零点 (B) 二级零点
(C) 三级零点 (D) 四级零点
二、填空题
1.设为实数,称形如的 为复数.
2.设,则称 为指数函数,其中“”为自然对数的底.
3.若存在某个,使得 ,则称点为函数的解析点.
4.函数在点展成罗朗级数,即在 内展成罗朗级数.
5.若映射在区域内是 ,则称此映射为区域内的保形映射.
三、计算题
1.设,试求解析函数,使得,且满足.
2.设,试将在点展成幂级数.
3.计算积分.
四、证明题
试证:.
一、单项选择题
1.B 2.C 3.D 4.B 5.A
二、填空题
1. 有序数对 2. 3. 在内处处可导
4. 5. 单叶且保角的
三、计算题
1.解:由C-R条件有,所以
又因为,得,所以
所以
由此得
由得,故
经验证
或
即为所求.
2. 解:在内可展成幂级数,有
,
5. 解:积分路径即为,而被积函数共有两个奇点1与位于内部,所以
而
故
四、证明题
证:令
于是
故 请您删除一下内容,O(∩_∩)O谢谢!!!2016年中央电大期末复习考试小抄大全,电大期末考试必备小抄,电大考试必过小抄Basketball can make a true claim to being the only major sport that is an American invention. From high school to the professional level, basketball attracts a large following for live games as well as television coverage of events like the National Collegiate Athletic Association (NCAA) annual tournament and the National Basketball Association (NBA) and Womens National Basketball Association (WNBA) playoffs. And it has also made American heroes out of its player and coach legends like Michael Jordan, Larry Bird, Earvin Magic Johnson, Sheryl Swoopes, and other great players. At the heart of the game is the playing space and the equipment. The space is a rectangular, indoor court. The principal pieces of equipment are the two elevated baskets, one at each end (in the long direction) of the court, and the basketball itself. The ball is spherical in shape and is inflated. Basket-balls range in
显示全部