专题08立体几何-天津市2023年高三各区数学模拟考试题型分类汇编.docx
试卷第=page11页,共=sectionpages33页
试卷第=page11页,共=sectionpages33页
专题08立体几何——天津市2023年高三各区数学模拟考试题型分类汇编
1.(2023·天津和平·耀华中学校考一模)在中国古代数学经典著作《九章算术》中,称图中的多面体ABCDEF为“刍甍”,书中描述了刍甍的体积计算方法:求积术曰,倍下袤,上袤从之,以广乘之,又以高乘之,六而一,即,其中h是刍甍的高,即点F到平面ABCD的距离.若底面ABCD是边长为4的正方形,且平面ABCD,和是等腰三角形,,则该刍甍的体积为(????)
A. B. C. D.
2.(2023·天津河西·统考一模)截角四面体是一种半正八面体,可由四面体经过适当的截角而得到.如图,将棱长为6的正四面体沿棱的三等分点作平行于底面的截面截角得到所有棱长均为2的截角四面体,则该截角四面体的体积为(????)
A. B. C. D.
3.(2023·天津·校联考一模)攒尖是古代中国建筑中屋顶的一种结构形式,常见的有圆形攒尖?三角攒尖?四角攒尖?六角攒尖等,多见于亭阁式建筑,某园林建筑为四角攒尖,它主要部分的轮廓可近似看作一个正四棱锥,若这个正四棱锥的棱长均为2,则该正四棱锥的体积为(????)
A. B. C. D.
4.(2023·天津·校联考一模)数学中有许多形状优美,寓意独特的几何体,“勒洛四面体”就是其中之一.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的公共部分.如图,在勒洛四面体中,正四面体的棱长为,则下列结论正确的是(????)
A.勒洛四面体最大的截面是正三角形
B.若、是勒洛四面体表面上的任意两点,则的最大值为
C.勒洛四面体的体积是
D.勒洛四面体内切球的半径是
5.(2023·天津·校联考一模)如图,几何体为一个圆柱和圆锥的组合体,圆锥的底面和圆柱的一个底面重合,圆锥的顶点为,圆柱的上、下底面的圆心分别为、,若该几何体存在外接球(即圆锥的顶点与底面圆周在球面上,且圆柱的底面圆周也在球面上).已知,则该组合体的体积等于(????)
A. B. C. D.
6.(2023·天津·大港一中校联考一模)在中国古代数学经典著作九章算术中,称图中的多面体为“刍甍”书中描述了刍甍的体积计算方法:求积术曰,倍下袤,上袤从之,以广乘之,又以高乘之,六而一,即,其中是刍甍的高,即点到平面的距离若底面是边长为的正方形,,且,和是等腰三角形,,则该刍甍的体积为(????)
A. B. C. D.
7.(2023·天津河东·一模)在面积为4的扇形中,其周长最小时半径的值为(????)
A.4 B. C.2 D.1
8.(2023·天津·统考一模)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥侧面积的一半,那么其侧面三角形底边上的高与底面正方形的边长的比值为(????)
A. B. C. D.
9.(2023·天津和平·统考一模)为庆祝国庆,立德中学将举行全校师生游园活动,其中有一游戏项目是夹弹珠.如图,四个半径都是1cm的玻璃弹珠放在一个半球面形状的容器中,每颗弹珠的顶端恰好与容器的上沿处于同一水平面,则这个容器的容积是(????)
A. B.
C. D.
10.(2023·天津·统考一模)我国有着丰富悠久的“印章文化”,古时候的印章一般用贵重的金属或玉石制成,本是官员或私人签署文件时代表身份的信物,后因其独特的文化内涵,也被作为装饰物来使用.图1是明清时期的一个金属印章摆件,除去顶部的环以后可以看作是一个正四棱柱和一个正四棱锥组成的几何体,如图2.已知正四棱柱和正四棱锥的高相等,且底面边长均为4,若该几何体的所有顶点都在同一个球面上,则这个球的表面积是(????)
图1????????????????????????????图2
B. C. D.
11.(2023·天津和平·耀华中学校考二模)粽子,古称“角黍”,早在春秋时期就已出现,到晋代成为了端午节的节庆食物.现将两个正四面体进行拼接,得到如图所示的粽子形状的六面体,其中点G在线段CD(含端点)上运动,若此六面体的体积为,则下列说法正确的是(????)
??
A. B.
C.的最小值为 D.的最小值为
12.(2023·天津南开·统考二模)如图,某种中药胶囊外形是由两个半球和一个圆柱组成的,半球的直径是,圆柱高,则该中药胶囊的体积为(????)
A. B. C. D.
13.(2023·天津·二模)如图所示,有一个棱长为4的正四面体容器,是的中点,是上的动点,则下列说法正确的是(????)
①若是的中点,则直线与所成角为
②的周长最小值为
③如果在这个容器中放入1个小球