文档详情

八年级轴对称总复习教案及经典例题.doc

发布:2018-10-22约3.92千字共7页下载文档
文本预览下载声明
八年级轴对称总复习教案及经典例题 一、教学目的与考点分析: 1.本章的课标要求是:(1)图形的轴对称:①探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性及其相互关系;②欣赏现实生活中的轴对称图形,结合现实生活中典型实例了解并欣赏物体的镜面对称,能利用轴对称进行图案设计;③在同一直角坐标系中,感受图形轴对称变换后点的坐标的变化.(2)线段的垂直平分线:了解线段垂直平分线及其性质.(3)等腰三角形:①了解等腰三角形的有关概念,探索并掌握等腰三角形的性质和一个三角形是等腰三角形的条件,了解等边三角形的概念并探索其性质;②了解直角三角形的概念,探索并掌握直角三角形的性质和一个三角形是直角三角形的条件. 2.本章的主要内容是围绕等腰三角形展开的.等腰三角形是继角、线段后接触到的第三个轴对称图形,它为后面学习等边三角形、直角三角形和特殊四边形做下铺垫,也是平面几何研究的主要对象,起着承前启后的作用. 3.本章的重点是轴对称、轴对称变换、等腰三角形的性质和判定.难点是等腰三角形的性质和判定.掌握等腰三角形的性质和判定,并能应用这些知识是学好本章的关键. 二、教学内容: (一)、复习 三角全等形条件 (二)、教学内容   知识网络图示 基本知识提炼整理 一、基本概念 1.轴对称图形 如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点. 2.线段的垂直平分线 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线 3.轴对称变换 由一个平面图形得到它的轴对称图形叫做轴对称变换. 4.等腰三角形 有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 5.等边三角形 三条边都相等的三角形叫做等边三角形. 二、主要性质 1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. 2.线段垂直平分钱的性质 线段垂直平分线上的点与这条线段两个端点的距离相等. 3.(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y). (2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y). 4.等腰三角形的性质 (1)等腰三角形的两个底角相等(简称“等边对等角”). (2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合. (3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴. (4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等. (5)等腰三角形一腰上的高与底边的夹角是顶角的一半。 (6)等腰三角形顶角的外角平分线平行于这个三角形的底边. 5.等边三角形的性质 (1)等边三角形的三个内角都相等,并且每一个角都等于60°. (2)等边三角形是轴对称图形,共有三条对称轴. (3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合. 三、有关判定 1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”). 3.三个角都相等的三角形是等边三角形. 4.有一个角是60°的等腰三角形是等边三角形. 四、[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD, 求:△ABC各角的度数. 分析:根据等边对等角的性质,我们可以得到 ∠A=∠ABD,∠ABC=∠C=∠BDC, 再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A. 再由三角形内角和为180°,就可求出△ABC的三个内角. 把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷. 解:因为AB=AC,BD=BC=AD, 所以∠ABC=∠C=∠BDC. ∠A=∠ABD(等边对等角). 设∠A=x,则 ∠BDC=∠A+∠ABD=2x, 从而∠ABC=∠C=∠BDC=2x. 于是在△ABC中,有 ∠A+∠ABC+∠C=x+2x+2x=180° 解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°. [例2]在等边三角形ABC中的AC延长线上取一点E,以CE为边做等边三角形CDE,使它与三角形ABC位于直线AE的同一侧,点M为线段AD的中点,点N为线段BE的中点。 求证:三角形CNM为等边三角形。 分析 由已知易证明△ADC≌△BEC,得BE=AD,∠EBC=∠DAE,而M、N分别为BE、AD的中点,于是有BN=AM,要证明△CNM是等
显示全部
相似文档