同济大学线性代数第六版课后答案(全).doc
文本预览下载声明
第一章 行列式
1( 利用对角线法则计算下列三阶行列式(
(1)(
解
(2(((4)(3(0(((1)(((1)(1(1(8
(0(1(3(2(((1)(8(1(((4)(((1)
((24(8(16(4((4(
(2)(
解
(acb(bac(cba(bbb(aaa(ccc
(3abc(a3(b3(c3(
(3)(
解
(bc2(ca2(ab2(ac2(ba2(cb2
((a(b)(b(c)(c(a)(
(4)(
解
(x(x(y)y(yx(x(y)((x(y)yx(y3((x(y)3(x3
(3xy(x(y)(y3(3x2 y(x3(y3(x3
((2(x3(y3)(
2( 按自然数从小到大为标准次序( 求下列各排列的逆序数(
(1)1 2 3 4(
解 逆序数为0
(2)4 1 3 2(
解 逆序数为4( 41( 43( 42( 32(
(3)3 4 2 1(
解 逆序数为5( 3 2( 3 1( 4 2( 4 1, 2 1(
(4)2 4 1 3(
解 逆序数为3( 2 1( 4 1( 4 3(
(5)1 3 ( ( ( (2n(1) 2 4 ( ( ( (2n)(
解 逆序数为(
3 2 (1个)
5 2( 5 4(2个)
7 2( 7 4( 7 6(3个)
( ( ( ( ( (
(2n(1)2( (2n(1)4( (2n(1)6( ( ( (( (2n(1)(2n(2) (n(1个)
(6)1 3 ( ( ( (2n(1) (2n) (2n(2) ( ( ( 2(
解 逆序数为n(n(1) (
3 2(1个)
5 2( 5 4 (2个)
( ( ( ( ( (
(2n(1)2( (2n(1)4( (2n(1)6( ( ( (( (2n(1)(2n(2) (n(1个)
4 2(1个)
6 2( 6 4(2个)
( ( ( ( ( (
(2n)2( (2n)4( (2n)6( ( ( (( (2n)(2n(2) (n(1个)
3( 写出四阶行列式中含有因子a11a23的项(
解 含因子a11a23的项的一般形式为
((1)ta11a23a3ra4s(
其中rs是2和4构成的排列( 这种排列共有两个( 即24和42(
所以含因子a11a23的项分别是
((1)ta11a23a32a44(((1)1a11a23a32a44((a11a23a32a44(
((1)ta11a23a34a42(((1)2a11a23a34a42(a11a23a34a42(
4( 计算下列各行列式(
(1)(
解
(
(2)(
解
(
(3)(
解
(
(4)(
解
(abcd(ab(cd(ad(1(
5( 证明:
(1)((a(b)3;
证明
((a(b)3 (
(2);
证明
(
(3);
证明
(c4(c3( c3(c2( c2(c1得)
(c4(c3( c3(c2得)
(
(4)
((a(b)(a(c)(a(d)(b(c)(b(d)(c(d)(a(b(c(d);
证明
=(a(b)(a(c)(a(d)(b(c)(b(d)(c(d)(a(b(c(d)(
(5)(xn(a1xn(1( ( ( ( (an(1x(
显示全部