文档详情

计量经济学课件全部第四章多重共线性.pptx

发布:2022-04-28约1.67千字共42页下载文档
文本预览下载声明
1;引子: 发展农业和建筑业会减少财政收入吗? ;3;4;第四章 多重共线性;第一节 什么是多重共线性;7; 当 时,表明在数据矩阵 中,至少有一个列向量可以用其余的列向量线性表示,则说明存在完全的多重共线性。 ;不完全的多重共线性 ;10; 二、产生多重共线性的背景 ;第二节 多重共线性产生的后果;一、完全多重共线性产生的后果; 二、不完全多重共线性产生的后果;2.对参数区间估计时,置信区间趋于变大 3.假设检验容易作出错误的判断 4.可能造成可决系数较高,但对各个参数单独的 t 检验却可能不显著,甚至可能使估计的回归系数符号相反,得出完全错误的结论。 ; 第三节 多重共线性的检验;一、简单相关系数检验法; 注意: 较高的简单相关系数只是多重共线性存在的充分条件,而不是必要条件。特别是在多于两个解释变量的回归模型中,有时较低的简单相关系数也可能存在多重共线性。因此并不能简单地依据相关系数进行多重共线性的准确判断。 ; 二、方差扩大(膨胀)因子法 ;经验规则;三、直观判断法;3. 有些解释变量的回归系数所带正负号与定性分析结果违背时,很可能存在多重共线性。 4. 解释变量的相关矩阵中,自变量之间的相关系数较大时,可能会存在多重共线性问题。 ;四、逐步回归检测法;第四节 多重共线性的补救措施;一、修正多重共线性的经验方法; 2. 增大样本容量 如果样本容量增加,会减小回归参数的方差, 标准误差也同样会减小。因此尽可能地收集足 够多的样本数据可以改进模型参数的估计。 问题:增加样本数据在实际计量分析中常面临 许多困难。 ; 3. 变换模型形式 一般而言,差分后变量之间的相关性要比差分 前弱得多,所以差分后的模型可能降低出现共 线性的可能性,此时可直接估计差分方程。 问题:差分会丢失一些信息,差分模型的误差 项可能存在序列相关,可能会违背经典线性回 归模型的相关假设,在具体运用时要慎重。; 4. 利用非样本先验信息 通过经济理论分析能够得到某些参数之间的关 系,可以将这种关系作为约束条件,将此约束 条件和样本信息结合起来进行约束最小二乘估 计。; 5. 横截面数据与时序数据并用 首先利用横截面数据估计出部分参数,再利用 时序数据估计出另外的部分参数,最后得到整 个方程参数的估计。 注意:这里包含着假设,即参数的横截面估计和 从纯粹时间序列分析中得到的估计是一样的。 ; 6. 变量变换 变量变换的主要方法: (1)计算相对指标 (2)将名义数据转换为实际数据 (3)将小类指标合并成大类指标 变量数据的变换有时可得到较好的结果,但无 法保证一定可以得到很好的结果。; 二、逐步回归法;若新变量的引入未能改进 和 检验,且对其他回 归参数估计值的t 检验也未带来什么影响,则认为该 变量是多余变量。 若新变量的引入未能改进 和 检验,且显著地影 响了其他回归参数估计值的数值或符号,同时本身的 回归参数也通不过t 检验,说明出现了严重的多重共 线性。;33;34;35;36;37;38;第四章 小结; 3.诊断共线性的经验方法: (1) 表现为可决系数异常高而回归系数的t 检验不显著。 (2) 变量之间的零阶或简单相关系数。多个解释变量时,较低的零阶相关也可能出现多重共线性,需要检查偏相关系数。 (4)如果 高而偏相关系数低,则多重共线性是可能的。 (5) 用解释变量间辅助回归的可决系数判断。 ; 4.降低多重共线性的经验方法: (1)利用外部或先验信息; (2)横截面与时间序列数据并用; (3)剔除高度共线性的变量(如逐步回归); (4)数据转换; (5)获取补充数据或新数据; (6)选择有偏估计量(如岭回归)。 经验方法的效果取决于数据的性质和共线性的严重程度。;42
显示全部
相似文档