等比数列的前n项和教学设计(第一课时).doc
文本预览下载声明
《等比数列的前n项和》教学设计(第一课时)
李思齐
一、教材分析
1.在教材中的地位与作用
在《数列》一章中,《等比数列的前n项和》是一项重要的基础内容,从知识体系来看,它不仅是《等差数列的前n项和》与《等比数列》的顺延,也是前面所学《函数》的延续,实质上是一种特殊的函数n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是增强学生应用意识和数学能力的良好载体;从知识的应用价值来看,它是从大量现实和数学问题中抽象出来的一个模型,前n项和公式的推导过程中蕴涵了基本的数学思想方法,如分类讨论、错位相减等在数列求和问题中时常出现。等比数列的前n项和在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。
2.教材编排与课时安排
提出问题→问题解决→等比数列前n项和公式推导→强化公式运用(例题与练习)。
教师教学用书安排“等比数列的前n项和”这部分内容授课时间2课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导及简单应用,教学中注重公式的形成推导过程,并充分揭示公式的结构特征和内在联系。
二、教学目标分析
依据课程标准,结合学生的认知发展水平和心理特点,确定本节课的教学目标如下:
【知识与技能】 理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题,一是已知等比数列基本量而求其前n项和;二是已知前n项和而逆向求解数列基本量;三是基本思想方法(错位相减法)的运用。
【过程与方法】 感悟并理解公式的推导过程,感受公式探求过程所蕴涵的从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质,初步提高学生的建模意识和探究、分析与解决问题的能力。
【情感、态度与价值观】 通过经历对公式的探索过程,对学生进行思维严谨性的训练项和公式的推导及其简单应用。从知识体系看,为后继学习提供了知识基础,具有承上启下的作用;就知识特点而言,蕴涵丰富的思想方法;就能力培养来说,通过公式推导教学可培养学生的运用数学语言交流表达的能力。
【教学难点】 等比数列前项和公式推导方法的理解。从学生认知发展水平看,探究能力和用数学语言交流的能力有待提高。从知识特点看,等比数列前n项和公式的推导与等差数列的前n项和公式的推导的可比性低,无法进行类比推导,需要充分理解等比数列的概念和性质,并能整合知识,做到融会贯通,而这对学生却是比较困难的,何况错位相减法是初次接触,对学生来说是很新鲜的,因此,教师在发挥学生主体性前提下要给予适当的提示和指导。
四、学情与教法分析
1.学情分析
从学生思维特点和认知结构看,前面学生已经深入学习过函数、等差数列及其前n项和等知识,一方面容易把本节内容与等差数列前n项和进行类比,另一方面,本节的公式推导所要求的计算量更大,思维的深刻性更高。而且对q = 1这一特殊情况,学生往往容易忽视,尤其是在后继学习使用过程中往往会出错。对高一下学期的学生而言,虽然具有一定的分析和解决问题的能力,逻辑思维能力也初步形成,但缺乏冷静、深刻,思维上具有片面性、不严谨的特点,对问题解决的一般性思维过程认识比较模糊。
2.教法分析
根据学生认知发展水平和心理结构特点,结合教学内容的难易程度,在教学过程中可以利用计算机多媒体和实物投影等辅助教学,以建构主义理论为指导,采用引导启发教学法和探究-建构教学相结合的教学模式,着重于学生的发现、探索和运用,并辅以变式教学,注意适时适当讲解和演练相结合。
3.教学构想
等比数列前 项和公式的推导是重点内容,学生观察实例,发现规律,归纳总结,可以给出等比数列前 项和公式推导的其他方法,提高学生学习的兴趣例题要全面,不忽略的情况通项公式与前 项和公式的综合运用涉及五个量,已知其中三个量求另两个量,但难度大指数方程补充可以化为等差数列、等比数列的数列求和问题教 学 过 程设计意图 问
题
情境 1个格子里放1颗麦粒,在第2个格子里放2颗麦粒,在第3个格子里放4颗麦粒,在第4个格子里放8颗麦粒,依此类推,每个格子里放的麦粒数都是前一格子里所放麦粒数的2倍,直到第64个格子.请给我足够粮食来实现上述要求!”国王说:“简单!来人,快办。”然而,过几天,手下急匆匆跑来,不好啦,不好啦!你猜怎么了?你知道西萨要多少粒小麦吗? 打开多媒体课件,动画语音展示故事情境,展示结束后引导、启发学生分析、思考问题 聆听故事,感受数学问题的情景化,趣味吸引的同时有自己的猜测,并在教师的引导、启发后展开自己的思维分析 以故事引题,激发学生学习兴趣和热情,调动学习积极性,领悟数学应用价值。
显示全部