文档详情

一种稀疏增强的压缩感知MIMO-OFDM信道估计-电子与信息学报.PDF

发布:2017-08-03约3.12万字共6页下载文档
文本预览下载声明
第35 卷第3 期 电 子 与 信 息 学 报 Vol.35 No.3 2013 年3 月 Journal of Electronics Information Technology Mar. 2013 一种稀疏增强的压缩感知MIMO-OFDM 信道估计算法 解志斌 薛同思* 田雨波 邹维辰 刘庆华 马国华 (江苏科技大学电子信息学院 镇江 212003) 摘 要:基于压缩感知(Compressed Sensing, CS)的信道估计可以达到减少导频的目的,但在频-时域信道矩阵到时 延-多普勒域的稀疏变换中存在谱泄漏现象,影响了信道矩阵的稀疏性和估计的均方误差(MSE)性能。为此该文对 信道的稀疏性进行研究,提出一种时域加窗的稀疏优化CS 信道估计算法。通过对时域加窗,所提算法抑制了由离 散截断导致的多普勒域泄漏,再据此设计出观测矩阵,以此方式增强信道在时延-多普勒域的稀疏性,并实现对稀 疏的信道矩阵更为准确的重构,达到改善信道估计MSE 性能的目的。仿真结果表明随信噪比的增大,加窗CS 算 法相比无窗CS 算法有效改善了信道估计的性能。 关键词:信道估计;压缩感知;稀疏表示;加窗 中图分类号:TN929.5 文献标识码: A 文章编号:1009-5896(2013)03-0665-06 DOI: 10.3724/SP.J.1146.2012.00860 A Sparsity Enhanced Channel Estimation Algorithm Based on Compressed Sensing in MIMO-OFDM Systems Xie Zhi-bin Xue Tong-si Tian Yu-bo Zou Wei-chen Liu Qing-hua Ma Guo-hua (Institute of Electronic Information, Jiangsu University of Science and Technology, Zhenjiang 212003, China) Abstract: Channel estimation which based on Compressed Sensing (CS) can achieve the purpose of reducing pilots, but in the transformation of channel matrix from frequency-time domain to delay-Doppler sparse domain exists spectral leakage phenomenon which affects the sparsity of the channel and the Mean Squared Error (MSE) performance of estimation. For this, this paper studies the sparsity of the channel and a compressed channel estimation algorithm which optimized the sparsity by time domain windowing is proposed. With time domain windowing, the proposed algorithm restrains the leakage of Doppler domain which is caused by discretization and truncation, then the measurement matrix is designed. By this method, the sparsity of the delay-Do
显示全部
相似文档