文档详情

专项训练:实际问题与二次函数.doc

发布:2018-10-01约1.77千字共4页下载文档
文本预览下载声明
PAGE \* MERGEFORMAT PAGE \* MERGEFORMAT 1 试卷第 试卷第 =page 2 14页,总 =sectionpages 14 14页 希望教育 专项训练:实际问题与二次函数 一、利用函数求图形面积的最值问题 围成图形面积的最值 只围二边的矩形的面积最值问题 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。 设矩形的一边长为x(米),面积为y(平方米),求y关于x的函数关系式; 当x为何值时,所围成的苗圃面积最大?最大面积是多少? 只围三边的矩形的面积最值 如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。问如何围,才能使养鸡场的面积最大? 围成正方形的面积最值 例3、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形. (1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少? (2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由. 二、利用二次函数解决抛物线形建筑物问题 某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线形状如图(1)所示.图(2)建立直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系是.请回答下列问题: (1)柱子OA的高度是多少米?(2)喷出的水流距水平面的最大高度是多少米? (3)若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外? 三、利用抛物线解决最大利润问题 例题1 某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看做一次函数:y=-10x+500. (1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润? (2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元? (3)物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量) 练习1.某玩具批发商销售每只进价为40元的玩具,市场调查发现,若以每只50元的价格销售,平均每天销售90只,单价每提高1元,平均每天就少销售3只. (1)平均每天的销售量y(只)与销售价x(元/只)之间的函数关系式为 ; (2)求该批发商平均每天的销售利润W(元)与销售只x(元/只)之间的函数关系式; (3)物价部门规定每只售价不得高于55元,当每只玩具的销售价为多少元时,可以获得最大利润?最大利润是多少元? 5.某文具店销售一种进价为10元/个的签字笔,物价部门规定这种签字笔的售价不得高于14元/个,根据以往经验:以12元/个的价格销售,平均每周销售签字笔100个;若每个签字笔的销售价格每提高1元,则平均每周少销售签字笔10个. 设销售价为x元/个. (1)该文具店这种签字笔平均每周的销售量为 个(用含x的式子表示); (2)求该文具店这种签字笔平均每周的销售利润w(元)与销售价x(元/个)之间的函数关系式; (3)当x取何值时,该文具店这种签字笔平均每周的销售利润最大?最大利润是多少元? 利用二次函数解决动点问题 例1如图8,如图9,在平行四边形ABCD中,AD=4 cm,∠A=60°,BD⊥AD. 一动点P从A出发,以每秒1 cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD . (1) 当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积; (2) 当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1 cm的速度匀速运动,在BC上以每秒2 cm的速度匀速运动. 过Q作直线QN,使QN∥PM. 设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD所得图形的面积为S cm2 . ① 求S关于t的函数关系式; ② 求S的最大值。
显示全部
相似文档