文档详情

八年级数学培优(下册).doc

发布:2019-06-30约2.04万字共42页下载文档
文本预览下载声明
八年级数学培优讲义 PAGE PAGE 38 第十九章 四边形 测试1 平行四边形的性质(一) 学习要求 1.理解平行四边形的概念,掌握平行四边形的性质定理; 2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题. 课堂学习检测 一、填空题 1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD记作__________。 2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长×______. 3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______. 4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______. 5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______. 6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______. 6题图 7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______. 7题图 8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______. 二、选择题 9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成立的是( ). (A)AF=EF (B)AB=EF (C)AE=AF (D)AF=BE 10.如图,下列推理不正确的是( ). (A)∵AB∥CD ∴∠ABC+∠C=180° (B)∵∠1=∠2 ∴AD∥BC (C)∵AD∥BC ∴∠3=∠4 (D)∵∠A+∠ADC=180° ∴AB∥CD 11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ). (A)5 (B)6 (C)8 (D)12 综合、运用、诊断 一、解答题 12.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF. 13.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB于点F,试判断AF与CE是否相等,并说明理由. 14.已知:如图,E、F分别为□ABCD的对边AB、CD的中点. (1)求证:DE=FB; (2)若DE、CB的延长线交于G点,求证:CB=BG. 15.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF. 求证:(1)BE=DF;(2)BE∥DF. 拓展、探究、思考 16.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标. 17.某市要在一块□ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在□ABCD的四条边上,请你设计两种方案: 方案(1):如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法; 图1 方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法. 图2 测试2 平行四边形的性质(二) 学习要求 能综合运用所学的平行四边形的概念和性质解决简单的几何问题. 课堂学习检测 一、填空题 1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______. 2.□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是 ______. 3.平行四边形周长是40cm,则每条对角线长不能超过______cm. 4.如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=______;AB与CD的距离为______;AD与BC的距离为______;∠D=______. 5.□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=______,BC=______. 6.在□ABCD中,AC与BD交于O,若OA=3x,AC=4x+12,则OC的长为______. 7.在□ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______. 8.在□ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则□ABCD的面积为______. 二
显示全部
相似文档