文档详情

初二数学知识点总结(包括八级人教版上下两册知识内容非常完整)资料.doc

发布:2016-11-03约1.59万字共27页下载文档
文本预览下载声明
八年级上册知识点总结 第十一章 全等三角形复习 一、全等三角形 1.定义:能够完全重合的两个三角形叫做全等三角形。 理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。 2、全等三角形有哪些性质 (1)全等三角形的对应边相等、对应角相等。 理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。 (2)全等三角形的周长相等、面积相等。 (3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。 3、全等三角形的判定 边边边:三边对应相等的两个三角形全等(可简写成“SSS”) 边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”) 角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”) 角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”) 斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”) 4、证明两个三角形全等的基本思路: 二、角的平分线:从一个角的顶点得出一条射线把这个角分成两个相等的角,称这条射线为这个角的平分线。 1、性质:角的平分线上的点到角的两边的距离相等. 2、判定:角的内部到角的两边的距离相等的点在角的平分线上。 三、学习全等三角形应注意以下几个问题: (1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义; (2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上; (3) “有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等; (4)时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角” (5)截长补短法证三角形全等。 第十二章 轴对称 一、轴对称图形 1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。 2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点 3、轴对称图形和轴对称的区别与联系 4.轴对称与轴对称图形的性质 ①关于某直线对称的两个图形是全等形。 ②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 ③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 ④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。 ⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。 二、线段的垂直平分线 1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。 2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等 3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上 三、用坐标表示轴对称小结: 1.在平面直角坐标系中 ①关于x轴对称的点横坐标相等,纵坐标互为相反数; ②关于y轴对称的点横坐标互为相反数,纵坐标相等; ③关于原点对称的点横坐标和纵坐标互为相反数; ④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系; ⑤关于与直线X=C或Y=C对称的坐标 点(x, y)关于x轴对称的点的坐标为_ (x, -y)_____. 点(x, y)关于y轴对称的点的坐标为___(-x, y)___. 2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等 四、(等腰三角形)知识点回顾 1.等腰三角形的性质 ①.等腰三角形的两个底角相等。(等边对等角) ②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一) 理解:已知等腰三角形的一线就可以推知另两线。 2、等腰三角形的判定: 如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边) 五、(等边三角形)知识点回顾 1.等边三角形的性质: 等边三角形的三个角都相等,并且每一个角都等于60o 。 2、等边三角形的判定: ①三个角都相等的三角形是等边三角形。 ②有一个角是60o的等腰三角形是等边三角形。 3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。 第十三章 实数知识要点归纳 实数的分类: 正整数 整数 零 有理数 负整数 有限小数或无限循环小数 分数
显示全部
相似文档