文档详情

初二数学下知识点总结..doc

发布:2016-12-27约5.41千字共10页下载文档
文本预览下载声明
初二数学下知识点总结 函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法 把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法:用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。特别地,当一次函数中的b为0时,(k为常数,k0)这时,y叫做x的正比例函数。 2、一次函数的图像 所有一次函数的图像都是一条直线。 3、一次函数、正比例函数图像的主要特征: 一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。(如下图) 4. 正比例函数的性质 一般地,正比例函数有下列性质: (1)当k0时,图像经过第一、三象限,y随x的增大而增大; (2)当k0时,图像经过第二、四象限,y随x的增大而减小。 5、一次函数的性质 一般地,一次函数有下列性质: (1)当k0时,y随x的增大而增大 (2)当k0时,y随x的增大而减小 6、正比例函数和一次函数解析式的确定 确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。 k的符号 b的符号 函数图像 图像特征 k0 b0 y 0 x 图像经过一、二、三象限,y随x的增大而增大。 b0 y 0 x 图像经过一、三、四象限,y随x的增大而增大。 K0 b0 y 0 x 图像经过一、二、四象限,y随x的增大而减小 b0 y 0 x 图像经过二、三、四象限,y随x的增大而减小。 注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。 四边形 1.四边形的内角和与外角和定理: (1)四边形的内角和等于360°; (2)四边形的外角和等于360°. 2.多边形的内角和与外角和定理: (1)n边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°. 3.平行四边形的性质: 因为ABCD是平行四边形( 4.平行四边形的判定: . 5.矩形的性质: 因为ABCD是矩形( 6. 矩形的判定: (四边形ABCD是矩形. 7.菱形的性质: 因为ABCD是菱形 ( 8.菱形的判定: (四边形四边形ABCD是菱形. 9.正方形的性质: 因为ABCD是正方形 ( (1) (2)(3) 10.正方形的判定: (四边形ABCD是正方形. (3)∵ABCD是矩形 又∵AD=AB ∴四边形ABCD是正方形 11.等腰梯形的性质: 因为ABCD是等腰梯形( 12.等腰梯形的判定: (四边形ABCD是等腰梯形 (3)∵ABCD是梯形且AD∥BC ∵AC=BD ∴ABCD四边形是等腰梯形 14.三角形中位线定理: 三角形的中位线平行第三边,并且等于它的一半. 15.梯形中位线定理: 梯形的中位线平行于两底,并且等于两底和的一半. 一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正
显示全部
相似文档