二维小波收缩与各向异性扩散等价性框架及在图像去-电子与信息学报.PDF
文本预览下载声明
第 30 卷第 3 期 电 子 与 信 息 学 报 Vol.30No.3
2008 年 3 月 Journal of Electronics Information Technology Mar.2008
二维小波收缩与各向异性扩散等价性框架及在图像去噪中的应用
朱景福①② 黄凤岗①
①(哈尔滨工程大学计算机科学与技术学院 哈尔滨 150001)
②(黑龙江八一农垦大学信息技术学院 大庆 163319)
摘 要:图像去噪是图像处理中的一种重要技术。小波收缩根据噪声的小波系数幅值较小的特征通过收缩达到去噪
目的。各向异性扩散在尽可能保持图像特征的同时,根据梯度方向及幅值去噪。该文首先证明二维小波收缩与各向
异性扩散的等价性框架,对等价性给予验证,进而根据等价性提出综合利用两种方法优势的各向异性小波收缩去噪
算法。对比实验结果表明,此算法综合利用了小波收缩与各向异性扩散的优势,去噪效果更加理想。
关键词:图像去噪;小波收缩;各向异性扩散;各向异性小波收缩
中图分类号:TN911.73 文献标识码:A 文章编号:1009-5896(2008)03-0524-05
The Equivalence Framework and the Application to Image Denoising of
Two Dimensional Wavelet Shrinkage and Anisotropic Diffusivity
①② ①
Zhu Jing-fu Huang Feng-gang
①
(College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China)
②
(College of Information Technology, Heilongjiang August First Land Reclamation University, Daqing 163319, China)
Abstract: Image denoising is one of important technology in image processing. The denoising image can be gotten
by shrink the amplitude of wavelet coefficient of noise according to the fact that it is smaller than others in Wavelet
Shrinkage (WS). The Anisotropic Diffusivity (AD) completes denoising according to the direction and amplitude of
gradient while as far as possible to keep the characteristic of image. In this paper, the equivalence framework of two
dimensional wavelet shrinkage and anisotropic diffusivity is proved with experiment. After that, the Anisotropic
Wavelet Shrinkage (AWS) is proposed that synthesizes the merits of the wavelet shrinkage and anisotropic
dif
显示全部