北京市大兴区魏善庄中学2024年高考考前模拟数学试题含解析.doc
北京市大兴区魏善庄中学2024年高考考前模拟数学试题
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在等差数列中,若,则()
A.8 B.12 C.14 D.10
2.港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h的频率分别为()
A.300, B.300, C.60, D.60,
3.在中,角、、所对的边分别为、、,若,则()
A. B. C. D.
4.二项式的展开式中,常数项为()
A. B.80 C. D.160
5.甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.
①甲同学成绩的中位数大于乙同学成绩的中位数;
②甲同学的平均分比乙同学的平均分高;
③甲同学的平均分比乙同学的平均分低;
④甲同学成绩的方差小于乙同学成绩的方差.
以上说法正确的是()
A.③④ B.①② C.②④ D.①③④
6.已知函数,若时,恒成立,则实数的值为()
A. B. C. D.
7.已知复数满足,则的最大值为()
A. B. C. D.6
8.已知实数满足不等式组,则的最小值为()
A. B. C. D.
9.已知函数,且),则“在上是单调函数”是“”的()
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
10.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于()
A.16 B.17 C.18 D.19
11.2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”、“国富民强”、“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下:
小明说:“鸿福齐天”是我制作的;
小红说:“国富民强”不是小明制作的,就是我制作的;
小金说:“兴国之路”不是我制作的,
若三人的说法有且仅有一人是正确的,则“鸿福齐天”的制作者是()
A.小明 B.小红 C.小金 D.小金或小明
12.设函数满足,则的图像可能是
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.函数在区间(-∞,1)上递增,则实数a的取值范围是____
14.如图所示,在正三棱柱中,是的中点,,则异面直线与所成的角为____.
15.若函数(a>0且a≠1)在定义域[m,n]上的值域是[m2,n2](1<m<n),则a的取值范围是_______.
16.已知数列的前项和为,,,,则满足的正整数的所有取值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知矩形中,,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接.
(1)求证:平面;
(2)求二面角的余弦值.
18.(12分)在平面直角坐标系xoy中,曲线C的方程为.以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
(1)写出曲线C的极坐标方程,并求出直线l与曲线C的交点M,N的极坐标;
(2)设P是椭圆上的动点,求面积的最大值.
19.(12分)已知,如图,曲线由曲线:和曲线:组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.
(Ⅰ)若,求曲线的方程;
(Ⅱ)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;
(Ⅲ)对于(Ⅰ)中的曲线,若直线过点交曲线于点,求面积的最大值.
20.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线上.
(Ⅰ)求的极坐标方程和曲线的参数方程;
(Ⅱ)求曲线的内接矩形的周长的最大值.
21.(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,,为等边三角形,平面平面ABCD,M,N分别是线