文档详情

高中函数图像大全【免费】[方案].doc

发布:2018-09-01约3.82千字共12页下载文档
文本预览下载声明
指数函数 概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质: 规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y HYPERLINK /view/811624.htm \t _blank 轴对称,但这两个函数都不具有 HYPERLINK /view/580425.htm \t _blank 奇偶性。 2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。 3.四字口诀:“大增小减”。即:当a>1时,图像在R上是增函数;当0<a<1时,图像在R上是减函数。 4. 指数函数既不是奇函数也不是偶函数。 比较幂式大小的方法: 当底数相同时,则利用指数函数的单调性进行比较; 当底数中含有字母时要注意分类讨论; 当底数不同,指数也不同时,则需要引入中间量进行比较; 对多个数进行比较,可用0或1作为中间量进行比较 底数的平移:    在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。    在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。 对数函数 1.对数函数的概念 由于指数函数y=ax在定义域(-∞,+∞)上是单调函数,所以它存在反函数, 我们把指数函数y=ax(a>0,a≠1)的反函数称为对数函数,并记为y=logax(a>0,a≠1). 因为指数函数y=ax的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=logax的定义域为(0,+∞),值域为(-∞,+∞). 2.对数函数的图像与性质 对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x. 据此即可以画出对数函数的图像,并推知它的性质. 为了研究对数函数y=logax(a>0,a≠1)的性质,我们在同一直角坐标系中作出函数 y=log2x,y=log10x,y=log10x,y=logx,y=logx的草图 由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=logax(a>0,a≠1)的图像的特征和性质.见下表. 图 象 a>1 a<1 性 质 (1)x>0 (2)当x=1时,y=0 (3)当x>1时,y>0 0<x<1时,y<0 (3)当x>1时,y<0 0<x<1时,y>0 (4)在(0,+∞)上是增函数 (4)在(0,+∞)上是减函数 补充 性质 设y1=logax y2=logbx其中a>1,b>1(或0<a<1 0<b<1) 当x>1时“底大图低”即若a>b则y1>y2 当0<x<1时“底大图高”即若a>b,则y1>y2 比较对数大小的常用方法有: (1)若底数为同一常数,则可由对数函数的单调性直接进行判断. (2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论. (3)若底数不同、真数相同,则可用换底公式化为同底再进行比较. (4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较. 3.指数函数与对数函数对比 名称 指数函数 对数函数 一般形式 y=ax(a>0,a≠1) y=logax(a>0,a≠1) 定义域 (-∞,+∞) (0,+∞) 值域 (0,+∞) (-∞,+∞) 函 数 值 变 化 情 况 当a>1时, 当0<a<1时, 当a>1时 当0<a<1时, 单调性 当a>1时,ax是增函数; 当0<a<1时,ax是减函数. 当a>1时,logax是增函数; 当0<a<1时,logax是减函数. 图像 y=ax的图像与y=logax的图像关于直线y=x对称. 幂函数 幂函数的图像与性质 幂函数随着的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握,当的图像和性质,列表如下. 从中可以归纳出以下结论: 它们都过点,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. 时,幂函数图像过原点且在上是增函数. 时,幂函数图像不过原点且在上是减函数. 任何两个幂函数最多有三个公共点. 奇函数 偶函数 非奇非偶函数 O O x y O O x y O O x y O O x y O O x y O O x y O O x y O O x y O O x y 定义域 R R R 奇偶性 奇 奇 奇 非奇非偶 奇 在第Ⅰ象限的增减性 在第Ⅰ象限单调递增 在第Ⅰ象限单调递增 在第Ⅰ象限单调递增 在第Ⅰ象限单调递增 在第Ⅰ象限
显示全部
相似文档