文档详情

生物统计学(第3版).doc

发布:2017-06-04约1.49万字共16页下载文档
文本预览下载声明
概论 名词: 生物统计:将概率论和数理统计的原理应用到生物学中以分析和解释其数量资料的科学 试验设计:试验工作未进行之前应用生物统计原理,来制定合理的试验方案,包括选择动物,分组和对比以及相应的资料搜集整理和统计分析的方法。 总体与样本 数据具有不齐性。 根据研究目的确定的研究对象的全体称为总体(population); 含有有限个个体的总体称为有限总体; 包含有无限多个个体的总体叫无限总体; 总体中的一个研究单位称为个体 (individual); 从总体中随机抽出一部分具有代表性的个体称为样本(sample); 样本中所包含的个体数目叫样本容量或大小,常记为n。 通常把n≤30的样本叫小样本,n 30的样本叫大样本。 随机抽取(random sampling) 的样本是指总体中的每一个个体都有同等的机会被抽取组成样本。 变数与变异数列、变量 : 变数:研究中对样本个体的观察值。 变量:相同性质的事物间表现差异性的某种特征。如:身高、体重。 变异数列:将变数按从小到大的顺序排列的一组数列。 参数与统计量 由总体计算的特征数叫参数(parameter); 由样本计算的特征数叫统计量(staistic)。 准确性与精确性 准确性(accuracy)也叫准确度,指观测值与其真值接近的程度。若 x与μ相差的绝对值|x-μ|小, 则观测值x的准确性高; 反之则低。 精确性(precision)也叫精确度,指重复观测值彼此接近的程度。若观测值彼此接近,即任意二个观测值xi、xj 相差的绝对值|xi -xj |小,则观测值精确性高;反之则低。 调查或试验的准确性、精确性合称为正确性。由于真值μ常常不知道,所以准确性不易度量,但利用统计方法可度量精确性。 随机误差与系统误差 随机误差也叫抽样误差(sampling error) , 是由于许多无法控制的内在和外在的偶然因素所造成。带有偶然性质,在试验中,即使十分小心也难以消除。随机误差影响试验的精确性。 统计上的试验误差指随机误差。这种误差愈小,试验的精确性愈高。 系统误差也叫片面误差 (lopsided error),是试验处理之外的其他条件明显不一致所带来的偏差。是由于试验动物的初始条件相差较大,饲料种类、品质、数量、饲养条件未控制相同 ,测量的仪器不准、标准试剂未经校正,以及观测、记载、抄录、计算中的错误所引起。系统误差影响试验的准确性。 系统误差是一种有原因的偏差,因而在试验过程中要防止这种偏差的出现。随机误差是偶然性的。整个试验过程中涉及的随机波动因素愈多,试验的环节愈多,时间愈长,随机误差发生的可能性及波动程度愈大。随机误差不可避免,但可减少,这主要依赖控制试验过程,尤其那些随机波动性大的因素。系统误差是可以通过试验条件及试验过程的仔细操作而控制的。实际上一些主要的系统性偏差较易控制,而有些细微偏差则较难控制。 平均数、标准差 无偏估计量:当一个统计量的数学期望等于所估计的总体参数时,则称此统计量为该总体参数的无偏估计量 中位数的计算方法因资料是否分组而有所不同。分组资料中位数的计算方法 1、当n为奇数时: Md= 2、当n为 偶 数 时 : 已分组资料中位数的计算方法 若资料已分组,编制成次数分布表,则可利用次数分布表来计算中位数,其计算公式为: L — 中位数所在组的下限; i — 组距; f — 中位数所在组的次数; n — 总次数; c — 小于中数所在组的累加次数。 例题:某奶牛场68头健康母牛从分娩到第一次发情间隔时间 整理成次数分布表如表所示,求中位数。 例题:将100头长白母猪的仔猪一月窝重(单位:kg)资料整理成次数分布表如下,求其加权数平均数。 平均数适用于对称分布,特别是正态分布资料。 中位数适用于各种分布类型的资料,特别适合大样本偏态分布资料或者一端或两端无确切数值的资料。 几何平均数:n 个观测值相乘之积开 n 次方所得的方根,称为几何平均数,记为G。 例题:某波尔山羊群1997—2000年各年度的存栏数见表3—3,试求其年平均增长率。 G= =lg-1[(-0.368-0.398–0.602)] =lg-1(-0.456)=0.3501 例题:有8份血清的抗体效价分别为1:5, 1:10, 1:20, 1:40, 1:80, 1:160,1:320,1:640,求平均抗体效价。 平均抗体效价为: 1:57 几何平均数:适用于成等比数列的资料,特别是服从对数正态分布资料。如畜禽 、水产养殖的 增长率,抗体的滴度,药物的效价,畜禽疾病的潜伏期等。 众数:资料 中出现次数最多的那个观测值或次数最多一组的组中值,称为众数,记为M0。 适用于大样本;较粗糙 如前述的 50枚受精种蛋出雏天
显示全部
相似文档