中考数学试题分汇编冲刺—年中考数学压轴题汇编(含解题过程)3.doc
文本预览下载声明
27、(2009年湖北省荆门市)25.(本题满分12分)一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC.
(1)若m为常数,求抛物线的解析式;
(2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?
(3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得△BCD为等腰三角形?若存在,求出m的值;若不存在,请说明理由.
25.解:(1)设抛物线的解析式为:y=a(x-m+2)(x-m-2)=a(x-m)2-4a.…………2分
∵AC⊥BC,由抛物线的对称性可知:△ACB是等腰直角三角形,又AB=4,
∴C(m,-2)代入得a=.∴解析式为:y=(x-m)2-2.…………………………5分
(亦可求C点,设顶点式)
(2)∵m为小于零的常数,∴只需将抛物线向右平移-m个单位,再向上平移2个单位,可以使抛物线y=(x-m)2-2顶点在坐标原点.………………………………………7分
(3)由(1)得D(0,m2-2),设存在实数m,使得△BOD为等腰三角形.
∵△BOD为直角三角形,∴只能OD=OB.……………………………………………9分
∴m2-2=|m+2|,当m+2><△BOD为等腰三角形.……………………………12分
28、(2009年襄樊市)26.(本小题满分13分)
如图13,在梯形中,点是的中点,是等边三角形.
(1)求证:梯形是等腰梯形;
(2)动点、分别在线段和上运动,且保持不变.设求与的函数关系式;
(3)在(2)中:①当动点、运动到何处时,以点、和点、、、中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;
②当取最小值时,判断的形状,并说明理由.
26.(1)证明:∵是等边三角形
∴ 1分
∵是中点
∴
∵
∴
∴ 2分
∴
∴梯形是等腰梯形. 3分
(2)解:在等边中,
∴
∴ 4分
∴ ∴ 5分
∵ ∴ 6分
∴ ∴ 7分
(3)解:①当时,则有
则四边形和四边形均为平行四边形
∴ 8分
当时,则有
则四边形和四边形均为平行四边形
∴ 9分
∴当或时,以P、M和A、B、C、 D中的两个点为顶点的四边形是平行四边形.
此时平行四边形有4个. 10分
②为直角三角形 11分
∵
∴当取最小值时, 12分
∴是的中点,而
∴∴ 13分
(2009年湖南省株洲市)23.(满分1分)为直角三角形,,,点、在轴上,点坐标为(,)(),线段与轴相交于点,以(1,0)为顶点的抛物线过点、.
(1)求点的坐标(用表示);
(2)求抛物线的解析式;
(3)设点为抛物线上点至点之间的一动点,连结并延长交于点,连结 并延长交于点,试证明:为定值.
23.(1)由可知,,又△ABC为等腰直角三角形,∴,,所以点A的坐标是(). ………………… 3分
(2)∵ ∴,则点的坐标是().
又抛物线顶点为,且过点、,所以可设抛物线的解析式为:,得:
解得 ∴抛物线的解析式为 ………7分
(3)过点作于点,过点作于点,设点的坐标是,则,.
∵ ∴∽ ∴ 即,得
∵ ∴∽ ∴ 即,得
又∵
∴
即为定值8. ……………………12分
本答案仅供参考,若有其他解法,请参照本评分标准评分.
29、(2009年衡阳市)26、(本小题满分9分)
如图12,直线与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.
(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;
(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?
(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为,正方形OCMD与△AOB重叠部分的面积为S.试求S与的函数关系式并画出该函数的图象.
解:(1)设点M的横坐标为x,则点M的纵坐标为-x+4(0x4,x0,-x+40);
则:MC=∣-x+4∣=-x+4,MD=∣x∣=x;
∴C四边形OCMD=2(MC+MD)=2(-x+4+x)=8
∴当点M在AB上运动时,四边形OCMD的周长不发生变化,总是等于8;
(2)根据题意得:S四边形OCMD=MC·MD=(-x+4)· x=-x2+4x=-(x-2)2+4
∴四边形OCMD的面积是关于点M的横坐标x(0x4)的二次函数,并且当x=2,即当点M运动到线段AB的中点时,四边形OCMD的面积最
显示全部