线性代数第五版答案(全).pdf
文本预览下载声明
第一章 行列式
1. 利用对角线法则计算下列三阶行列式:
2 0 1
(1) 1 −4 −1;
−1 8 3
2 0 1
解 1 −4 −1
−1 8 3
2×(−4)×3+0×(− 1)×(− 1)+ 1×1×8
−0×1×3−2×(− 1)×8− 1×(−4)×(− 1)
−24+8+ 16−4 −4.
a b c
(2) b c a ;
c a b
a b c
解 b c a
c a b
acb+bac+cba−bbb−aaa−ccc
3 3 3
3abc−a −b −c .
1 1 1
(3) a b c ;
a2 b2 c2
1 1 1
解 a b c
a2 b2 c2
2 2 2 2 2 2
bc +ca +ab −ac −ba −cb
(a−b)(b−c)(c−a).
1
x y x + y
(4) y x + y x .
x + y x y
x y x + y
解 y x + y x
x + y x y
3 3 3
x(x+y )y +yx (x+y )+(x+y )yx −y −(x+y ) −x
3 2 3 3 3
3xy(x+y )−y −3x y −x −y −x
3 3
−2(x +y ).
2. 按自然 数 从小到大为标准次序, 求下列各排列的逆
序数:
(1)1 2 3 4;
解 逆序数为0
(2)4 1 3 2;
解 逆序数为4: 41, 43, 42, 32.
(3)3 4 2 1;
解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1.
(4)2 4 1 3;
解 逆序数为3: 2 1, 4 1, 4 3.
(5)1 3 ⋅ ⋅ ⋅ (2n− 1) 2 4 ⋅ ⋅ ⋅ (2n);
解 逆序数为n(n −1) :
2
3 2 (1 个)
5 2, 5 4(2 个)
7 2, 7 4, 7 6(3 个)
2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
(2n− 1)2, (2n− 1)4, (2n− 1)6, ⋅ ⋅ ⋅, (2n− 1)(2n−2) (n− 1 个)
(6)1 3 ⋅ ⋅ ⋅ (2n− 1) (2n) (2n−2) ⋅ ⋅ ⋅ 2.
解 逆序数为n(n− 1) :
3 2(1 个)
5 2, 5 4 (2 个)
⋅ ⋅ ⋅ ⋅
显示全部