2004年江苏高考数学卷(Word版).doc
文本预览下载声明
第 PAGE 1 页 共 NUMPAGES 6 页
2004年普通高等学校招生全国统一考试
数学(江苏卷)
一、选择题(5分×12=60分)
1.设集合P={1,2,3,4},Q={},则P∩Q等于 ( )
(A){1,2} (B) {3,4} (C) {1} (D) {-2,-1,0,1,2}
2.函数y=2cos2x+1(x∈R)的最小正周期为 ( )
(A) (B) (C) (D)
3.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( )
(A)140种 (B)120种 (C)35种 (D)34种
4.一平面截一球得到直径是6cm的圆面,球心到这个平面的距离是4cm,则该球的体积是 ( )
(A) (B) (C) (D)
5.若双曲线的一条准线与抛物线的准线重合,则双曲线离心率为 ( )
(A) (B) (C) 4 (D)
6.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )
0.5人数(人)
0.5
人数(人)
时间(小时)
20
10
5
0
1.0
1.5
2.0
15
7.的展开式中x3的系数是 ( )
(A)6 (B)12 (C)24 (D)48
8.若函数的图象过两点(-1,0)和(0,1),则 ( )
(A)a=2,b=2 (B)a= EQ \r(,2) ,b=2 (C)a=2,b=1 (D)a= EQ \r(,2) ,b= EQ \r(,2)
9.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上和概率是 ( )
(A) EQ \F(5,216) (B) EQ \F(25,216) (C) EQ \F(31,216) (D) EQ \F(91,216)
10.函数在闭区间[-3,0]上的最大值、最小值分别是 ( )
(A)1,-1 (B)1,-17 (C)3,-17 (D)9,-19
11.设k1,f(x)=k(x-1)(x∈R) . 在平面直角坐标系xOy中,函数y=f(x)的图象与x轴交于A点,它的反函数y=f -1(x)的图象与y轴交于B点,并且这两个函数的图象交于P点. 已知四边形OAPB的面积是3,则k等于 ( )
(A)3 (B) EQ \F(3,2) (C) EQ \F(4,3) (D) EQ \F(6,5)
12.设函数,区间M=[a,b](ab),集合N={},则使M=N成立的实数对(a,b)有 ( )
(A)0个 (B)1个 (C)2个 (D)无数多个
二、填空题(4分×4=16分)
13.二次函数y=ax2+bx+c(x∈R)的部分对应值如下表:
x
-3
-2
-1
0
1
2
3
4
y
6
0
-4
-6
-6
-4
0
6
则不等式ax2+bx+c0的解集是_______________________.
14.以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是________________.
15.设数列{an}的前n项和为Sn,Sn=(对于所有n≥1),且a4=54,则a1
显示全部