线性规划的图解法课件.ppt
文本预览下载声明
管 理 运 筹 学 * 第二章 线性规划的图解法 §1 问题的提出 §2 图解法 §3 图解法的灵敏度分析 * 第二章 线性规划的图解法 在管理中一些典型的线性规划应用 合理利用线材问题:如何在保证生产的条件下,下料最少 配料问题:在原料供应量的限制下如何获取最大利润 投资问题:从投资项目中选取方案,使投资回报最大 产品生产计划:合理利用人力、物力、财力等,使获利最大 劳动力安排:用最少的劳动力来满足工作的需要 运输问题:如何制定调运方案,使总运费最小 线性规划的组成: 目标函数 Max F 或 Min F 约束条件 s.t. (subject to) 满足于 决策变量 用符号来表示可控制的因素 * §1 问题的提出 例1. 某工厂在计划期内要安排Ⅰ、Ⅱ两种产品的生产,已知生产单位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表: 问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多? 线性规划模型: 目标函数:Max z = 50 x1 + 100 x2 约束条件:s.t. x1 + x2 ≤ 300 2 x1 + x2 ≤ 400 x2 ≤ 250 x1 , x2 ≥ 0 * §1 问题的提出 建模过程 1.理解要解决的问题,了解解题的目标和条件; 2.定义决策变量( x1 ,x2 ,… ,xn ),每一组值表示一个方案; 3.用决策变量的线性函数形式写出目标函数,确定最大化或最小化目标; 4.用一组决策变量的等式或不等式表示解决问题过程中必须遵循的约束条件 一般形式 目标函数: Max (Min) z = c1 x1 + c2 x2 + … + cn xn 约束条件: s.t. a11 x1 + a12 x2 + … + a1n xn ≤ ( =, ≥ )b1 a21 x1 + a22 x2 + … + a2n xn ≤ ( =, ≥ )b2 …… …… am1 x1 + am2 x2 + … + amn xn ≤ ( =, ≥ )bm x1 ,x2 ,… ,xn ≥ 0 * 一些基本概念 非线性规划 可行解 可行域 最优解 最优值 凸集 * 例1.目标函数: Max z = 50 x1 + 100 x2 约束条件: s.t. x1 + x2 ≤ 300 (A) 2 x1 + x2 ≤ 400 (B) x2 ≤ 250 (C) x1 ≥ 0 (D) x2 ≥ 0 (E) 得到最优解: x1 = 50, x2 = 250 最优目标值 z = 27500 §2 图 解 法 对于只有两个决策变量的线性规划问题,可以在平面直角坐标系上作图表示线性规划问题的有关概念,并求解。 下面通过例1详细讲解其方法: * §2 图 解 法 (1)分别取决策变量X1 , X2 为坐标向量建立直角坐标系。在直角坐标系里,图上任意一点的坐标代表了决策变量的一组值,例1的每个约束条件都代表一个半平面。 x2 x1 X2≥0 X2=0 x2 x1 X1≥0 X1=0 * §2 图 解 法 (2)对每个不等式(约束条件),先取其等式在坐标系中作直线,然后确定不等式所决定的半平面。 100 200 300 100 200 300 x1+x2≤300 x1+x2=300 100 100 200 2x1+x2≤400 2x1+x2=400 300 200 300 400 * §2 图 解 法 (3)把五个图合并
显示全部