四年级数学下册简便计算题训练.pdf
四年级下册数学寒假预习
一、必背知识点:运算定律及性质
1、加法交换律:a+b=b+a
2、加法结合律:(a+b)+c=a+(b+c)
3、法交换律:axb=bxa
4、法结合律:(axb)xc=ax(bxc)
5、法分配律:(a+b)xc=axc+bxcax(b+c)=axb+axc
6、减法的性质(两种变形):a-b-c=a-(b+c)a-(b+c)=a-b-c
8、除法的性质(两种变形):ab-e-c=a+(bxc)a+(bxc)=a・b・c
一、加减法运算定律(简算的重点在于简便的过程,检查时切不可只看最后的答
案,过程不简便一样没有得分)。
1、加法的交换律
两个数相加,交换加数的位置,和不变。通常用字母表示:a+b=b+a.
2、加法的结合律
三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,
再同第一个数相加,它们的和不变。用字母表示:(a+b)+c=a+(b+c)
注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、
整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两
个加数结合起来先运算。例:(1)97+89+11(2)85+15+41+59
3、加减法的运算中要注意以下几种情况的简便运算:
注:这些都是由加法交换律和结合律衍生出来的。
性质①:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:a-b-c=a-c-b例:198-75-98
性质②:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数
的和。字母表示:a-b-c=a-(b+c)
例:(1)369-45-155(2)896-580-120(3)344-(144+37)
性质③:一个数减去另一个数的同时加上一个数等于这个数减去另外两个数的
差。字母表示:a-b+c=a-(b-c)例:571-128+28
1/21
4、拆分、凑整法简便计算
(1)拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆
分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计
算。例如:103=100+3,1006=1000+6,■■■
(2)凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写
成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进
行简便计算。例如:97=100-3,998=1000-2,-
注意:拆分凑整法在加、减法中的简便不是很明显,但和除法的运算定律结合
起来就具有很大的简便了。
二、除法运算定律
1、法交换律
交换两个因数的位置,积不变。这叫做法交换律。字母表示:axb=bxa
2、法结合律
先前两个数,或者先后两个数,积不变。这叫做法结合律。
字母表示:(axb)xc=ax(bxc)
注意:法结合律的应用基于要熟练掌握一些相后积为整十、整百、整千的数。
例如:25x4=10020x5=10050x2=100125x8=1000
例:(1)25x9x4(2)25x12(3)25x32x125
3、法分配律
两个数的和与一个数相,可以先把它们与这个数分别相,再相加。这叫做
法分配律。字母表示:(a+b)xc=axc+bxc
axc+bxc=(a+