the robustness of semantic segmentation models to adversarial attackscvpr18语义分割模型对抗性攻击鲁棒性.pdf
OntheRobustnessofSemanticSegmentationModelstoAdversarialAttacks
AnuragArnab1OndrejMiksik1,2PhilipH.S.Torr1
1UniversityofOxford2EmotechLabs
{anurag.arnab,ondrej.miksik,philip.torr}@eng.ox.ac.uk
ThisraisesdoubtsaboutDNNsbeingusedinsafety-critical
applicationssuchasdriverlessvehicles[36]ormedicaldi-
DeepNeuralNetworks(DNNs)havebeendemonstratedagnosis[21]sincethenetworkscouldinexplicablyclassify
toperformexceptionallywellonmostrecognitiontasksanaturalinputincorrectlyalthoughitisalmostidenticalto
suchasimageclassificationandsegmentation.However,examplesithasclassifiedcorrectlybefore(Fig.1).More-
theyhavealsobeenshowntobevulnerabletoadversarialover,itallowsthepossibilityofmaliciousagentsattacking
examples.Thisphenomenonhasrecentlyattractedalotofsystemsthatuseneuralnetworks[40,53,57,23].Hence,
attentionbutithasnotbeenextensivelystudiedonmulti-therobustnessofnetworksperturbedbyadversarialnoise
ple,large-scaledatasetsandcomplextaskssuchasseman-maybeasimportantasthepredictiveaccuracyoncleanin-
ticsegmentationwhichoftenrequiremorespecialisednet-puts.Andifmultiplemodelsachievecomparableperfor-
workswithadditionalcomponentssuchasCRFs,dilatedmance,weshouldalwaysconsiderdeployingtheonewhich
convolutions,skip-connectionsandmultiscaleprocessing.isinherentlymostrobusttoadversarialexamplesin(safety-
Inthispaper,wepresentwhattoourknowledgeisthe