Matlab在图像处理与目标识别方面的应用.doc
文本预览下载声明
PAGE
PAGE - 12 -
Matlab在图像处理与目标识别方面的应用实验
作者:林健(北京理工大学计算机科学技术学院)
指导教师:尚斐(北京理工大学医学图像实验室)
Website:/ E-mail:yumenlj@126.com QQ:71424
一、染色体识别与统计
待处理的图像如下所示。图像有明显的噪音,部分染色体有断开和粘连的情况。
要识别其中的染色体并统计其数目,我们采用Matlab平台提供的一些图像处理函数。基本方法如下:
1、读取待处理的图像,将其转化为灰度图像,然后反白处理。
I = imread(chrimage.bmp);
I2 = rgb2gray(I);
s = size(I2);
I4 = 255*ones(s(1), s(2), uint8);
I5 = imsubtract(I4,I2);2、对图像进行中值滤波去除噪音。经试验,如果采用3×3的卷积因子,噪音不能较好地去除,染色体附近毛糙严重。而5×5和7×7的卷积因子能取得较好的效果。图示滤噪前后的效果对比。
I3 = medfilt2(I5,[5 5]);
3、将图像转化为二值图像。经试验,采用门限值为0.3附近时没有染色体断开和粘连(如下左图),便于后期统计。
I3 = imadjust(I3);
bw = im2bw(I3, 0.3);在此步骤,如果使用graythresh函数自动寻找门限,得到的图像染色体断开的比较多(如下中图),此时可以将白色区域膨胀,使断开的的染色体连接(如下右图)。
level = graythresh(I3);
bw = im2bw(I3,level);
se = strel(disk,5);
bw = imclose(bw,se);
两种方法相比,前者对染色体面积的计算比较准确,后者对不同图像的适应性较强。下面的步骤将基于前一种方法。
4、去除图像中面积过小的,可以肯定不是染色体的杂点。这些杂点一部分是滤噪没有滤去的染色体附近的小毛糙,一部分是图像边缘亮度差异产生的。
bw = bwareaopen(bw, 10);5、标记连通的区域,以便统计染色体数量与面积。
[labeled,numObjects] = bwlabel(bw,4);6、用颜色标记每一个染色体,以便直观显示。此时染色体的断开与粘连问题已基本被解决。最终效果如下图。
RGB_label=label2rgb(labeled,@spring,c,shuffle);
7、统计被标记的染色体区域的面积分布,显示染色体总数。统计总数为46,与人工数出数目的相同。
chrdata = regionprops(labeled,basic)
allchrs = [chrdata.Area];
num = size(allchrs)
nbins = 20;
figure,hist(allchrs,nbins);
title(num(2))
至此,染色体识别与统计完成。此方法采用Matlab已有的函数,简单且快捷。但缺点是此程序是专为这一幅待处理图像写的,诸如门限、滤噪方法的特定性强。同时没有经过大量同类待处理图像的测试,系统通用性不强。不过作为实验,了解提取与分析目标图像中的有效信息的基本方法,是足够的。
* 参考文献:
1、Correcting Nonuniform Illumination, Matlab 7.0 Demos, The MathWorks.
二、汽车牌照定位与字符识别
待处理的图像如下所示。图像整体比较清晰干净,车牌方向端正,字体清楚,与周围颜色的反差较大。
要定位汽车牌照并识别其中的字符,我们采用Matlab平台提供的一些图像处理函数,以傅立叶变换通过字符模板与待处理的图像匹配为核心思想。基本方法如下:
1、读取待处理的图像,将其转化为二值图像。经试验,采用门限值为0.2附近时车牌字符最为清楚,杂点最少(如下左图)。
I = imread(car.jpg);
I2 = rgb2gray(I);
I4 = im2bw(I2, 0.2);2、去除图像中面积过小的,可以肯定不是车牌的区域。
bw = bwareaopen(I4, 500);3、为定位车牌,将白色区域膨胀,腐蚀去无关的小物件,包括车牌字符(如下右图)。
se = strel(disk,15);
bw = imclose(bw,se);
4、此时车牌所在白色连通域已清晰可见,但在黑色区域以外,是一个更大的白色连通域,将车牌所在连通域包围了。有必要将其填充。
bw = imfill(bw,[1 1]);5、查找连通域边界。同时保留此图形,以备后面在它上面做标记。
[B,L] = bwboundarie
显示全部