文档详情

排列组合例题教案文库.doc

发布:2019-06-16约2.2万字共27页下载文档
文本预览下载声明
PAGE PAGE 1 排列组合 一、合理分类与准确分步法(利用计数原理) 例1、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有??(???) A.120种??????B.96种????C.78种????D.72种? 分析:由题意可先安排甲,并按其分类讨论:1)若甲在末尾,剩下四人可自由排,有A=24种排法;2)若甲在第二,三,四位上,则有3*3*3*2*1=54种排法,由分类计数原理,排法共有24+54=78种,选C。 解排列与组合并存的问题时,一般采用先选(组合)后排(排列)的方法解答。 二、特殊元素与特殊位置优待法 对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。 例2、从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( ) (A) 280种 (B)240种 (C)180种 (D)96种 分析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有种不同的选法,所以不同的选派方案共有=240种,选B。 三、插空法、捆绑法 对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。 例3、7人站成一排照相,?若要求甲、乙、丙不相邻,则有多少种不同的排法? 分析:?先将其余四人排好有A=24种排法,再在这些人之间及两端的5个“空”中选三个位置让甲乙丙插入,则有A=60种方法,这样共有24*60=1440种不同排法。 对于局部“小整体”的排列问题,可先将局部元素捆绑在一起看作一个元,与其余元素一同排列,然后在进行局部排列。 例4、计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有( ) (A) (B) (C) (D) 分析:先把三种不同的画捆在一起,各看成整体,但水彩画不放在两端,则整体有种不同的排法,然后对4幅油画和5幅国画内部进行全排,有种不同的排法,所以不同的陈列方式有种,选D。 一、选择题 1.(2010广东卷理)2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 A. 36种 B. 12种 C. 18种 D. 48种 【解析】分两类:若小张或小赵入选,则有选法;若小张、小赵都入选,则有选法,共有选法36种,选A. 2.(2010北京卷文)用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为 ( ) A.8 B.24 C.48 D.120 【答案】C 【解析】本题主要考查排列组合知识以及分步计数原理知识. 属于基础知识、基本运算的考查. 2和4排在末位时,共有种排法, 其余三位数从余下的四个数中任取三个有种排法, 于是由分步计数原理,符合题意的偶数共有(个).故选C. 3.(2010北京卷理)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( ) A.324 B.328 C.360 D.648 【答案】B 【解析】本题主要考查排列组合知识以及分类计数原理和分步计数原理知识. 属于基础知识、基本运算的考查. 首先应考虑“0”是特殊元素,当0排在末位时,有(个), 当0不排在末位时,有(个), 于是由分类计数原理,得符合题意的偶数共有(个).故选B. 4.(2010全国卷Ⅱ文)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有 (A)6种 (B)12种 (C)24种 (D)30种 答案:C 解析:本题考查分类与分步原理及组合公式的运用,可先求出所有两人各选修2门的种数=36,再求出两人所选两门都相同和都不同的种数均为=6,故只恰好有1门相同的选法有24种 。 5.(2009全国卷Ⅰ理)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选
显示全部
相似文档