水下机器人嵌入式控制系统设计和运动控制仿真-.docx
文本预览下载声明
【Word版本下载可任意编辑】
PAGE
1 - / NUMPAGES 1
水下机器人嵌入式控制系统设计和运动控制仿真-
1 引言 智能水下机器人在海洋石油开发、矿物资源开采、打捞和军事等方面都有广泛的应用前景。水下机器人已经开始取代过去由载人潜器和潜水员所担负的工作,尤其是在大深度和危险区域发挥了更大的优势。水下机器人运动控制的是嵌入式计算机系统,它需具有运动控制算法的实现、数据采集、与外设的通讯等功能。本文以潜艇式有缆遥控水下机器人(ROV,Remotely Operated Vehicle)为对象设计了基于ARM9处理器的嵌入式控制系统,并开展了深度控制的仿真实验。 2 ROV构造本文设计的可用于水下探测的ROV采用了开架式构造,搭载有声纳、姿态传感器。可以在岸上控制台通过电缆控制ROV完成前进、后退、上浮、下沉、左右转弯等动作。ROV构造如图1所示,耐压舱在中间,左右两边是浮力调节舱。电子舱用来安装高、低频信标机、姿态传感器和控制电路等,还可提供锂电池的空间。浮力舱用来提供浮力,框架把整体固定在一起,保证的稳定性。推进器由两个螺旋桨推进器组成,以保证ROV在水中可以自由地做前进、倒退和转艏运动。这种水下机器人构造有利于航向控制和前向运动。在水下运动时,横倾和纵倾运动对于该ROV是不重要的。水下探测ROV的航行速度较慢,其慢速与稳定性是水底探测任务所要求的。 基于浮力调节开展ROV的升沉运动和定深控制可以降低能耗。下潜、上浮运动通过调节两边的浮力调节舱的浮力来实现。ROV采用双螺旋桨推进器,布置在两侧,平行于中轴线。通过这两个推进器,既可以产生前进和后退的推力,也可以产生回转力矩,各自由度之间没有耦合。平行布置的两个推进器连线的中点要与浮心、重心在一条直线上,到达平衡推进。在浮力调节系统上采用了变质量调节系统,通过调节左右两个浮力舱的注排水量,改变整体浮力减少或增加,从而产生下降或上升的作用力。两个浮力调节舱不但能够调节ROV的浮力,还可调节ROV的姿态。螺旋桨推进器正向时推力为93千克力,反向时的推力为52.2千克力。工作水深300m。 3 ROV控制系统设计3.1 传感器系统水下探测机器人的控制系统分为水下和水上两部分组成。水上节点采用工控机,工控机安放在母船上,通过光纤通信与底层的嵌入式计算机实现数据通信。其上运行Windows操作系统,其功能是监控水下机器人的运行情况,发送控制命令。水下节点采用基于ARM微处理器的嵌入式计算机,负责传感器数据采集,运动控制算法的实现和通信功能,其上运行QNX操作系统。水下机器人上安装的传感器有:(1) 姿态航向传感器航向动态精度为0.5度,俯仰和横滚的动态精度为0.2度,尺寸:106x29x26mm,重量:0.15kg。(2) 运动传感器俯仰和横滚动态精度为0.03度,升沉精度为5cm或5%,尺寸: 134x120mm,重量:2kg。(3) 测扫声纳,长基线和超短基线水声定位系统。基于短基线和深度计获取位置信息,基于姿态传感器获取航向和姿态信息。(4) 压力传感器用于深度测量。(5) 可以搭载成像声纳、水下摄像机、荧光计、照明灯等。3.2 嵌入式控制系统嵌入式控制系统通过检测装置检测潜器的运动状态,将数据通过网络传输到水面计算机,水面计算机根据预定任务和预设算法计算出控制量,然后将控制量传给潜器,再由嵌入式系统控制潜器的运动装置。嵌入式控制系统框图如图2所示。 嵌入式控制系统的设计基于AT91RM9200处理器,内部集成ARM920T芯核,180MHz运行时有200MIPS处理能力;16KB的数据缓冲,16KB的指令缓冲;全功能MMU(存储器管理单元);16KB的内部SRAM和128KB的内部ROM。水下机器人的嵌入式系统框图如图2所示。通过I2C总线扩展出12位ADC,用于采集深度传感器数据,获取ROV深度。深度传感器的输出信号是4~20mA的电流信号,本系统采用RCV420精细变换器,可以将4~20mA的环路电流变换成0~5V的电压输出。模数转换器选用AD7992,转换时间2μs,与处理器通过标准的I2C接口开展数据交换。带光耦隔离器的I/O口用于控制浮力筒的开关。RS422和10M/100M以太网接口,用于和水面计算机通信。系统中的姿态传感器和信标机都是串口输出,并且通讯部分也需要一个串口,9200处理器内部串行异步收发器的数目不够,所以需要扩展串口,本系统采用SPI接口,外接两片GM8142开展串口扩展。扩展出的4路RS232串口,2路RS232用于采集航向和姿态传感器数据,获取水下ROV的运行状态。另外2路RS232接口采集高低频信标机数据。12位DAC来控制推进器电机。本系统采用两
显示全部