2-3 随机变量的方差和(2) .ppt
一、随机变量方差的概念及性质二、例题讲解三、矩的概念第2.3节方差四、小结
1.方差的定义一、随机变量方差的概念及性质
离散型随机变量的方差连续型随机变量的方差3.随机变量方差的计算(1)利用定义计算
(2)利用公式计算
4.方差的性质(1)设C是常数,则有(2)设X是一个随机变量,C是常数,则有(3)设a,b是常数,则
(6)契比雪夫不等式契比雪夫不等式契比雪夫
解二、例题讲解例
于是
三、矩的概念定义定义
2.说明
四、小结1.方差是一个常用来体现随机变量X取值分散程度的量.如果D(X)值大,表示X取值分散程度大,E(X)的代表性差;而如果D(X)值小,则表示X的取值比较集中,以E(X)作为随机变量的代表性好.2.方差的计算公式
3.方差的性质4.契比雪夫不等式
PafnutyChebyshevBorn:16May1821inOkatovo,Russia
Died:8Dec1894inStPetersburg,Russia契比雪夫资料
备份题1.思考:已知随机变量的期望和方差,能否确定其分布?
2