甘肃省平凉市第一中学2024年高考仿真模拟数学试卷含解析.doc
甘肃省平凉市第一中学2024年高考仿真模拟数学试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数是奇函数,且,若对,恒成立,则的取值范围是()
A. B. C. D.
2.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().
A.收入最高值与收入最低值的比是
B.结余最高的月份是月份
C.与月份的收入的变化率与至月份的收入的变化率相同
D.前个月的平均收入为万元
3.已知函数在上可导且恒成立,则下列不等式中一定成立的是()
A.、
B.、
C.、
D.、
4.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为的正方形及正方形内一段圆弧组成,则这个几何体的表面积是()
A. B. C. D.
5.若x,y满足约束条件则z=的取值范围为()
A.[] B.[,3] C.[,2] D.[,2]
6.大衍数列,米源于我国古代文献《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.已知该数列前10项是0,2,4,8,12,18,24,32,40,50,…,则大衍数列中奇数项的通项公式为()
A. B. C. D.
7.执行如图所示的程序框图,输出的结果为()
A. B.4 C. D.
8.在棱长均相等的正三棱柱中,为的中点,在上,且,则下述结论:①;②;③平面平面:④异面直线与所成角为其中正确命题的个数为()
A.1 B.2 C.3 D.4
9.设双曲线(a>0,b>0)的一个焦点为F(c,0)(c>0),且离心率等于,若该双曲线的一条渐近线被圆x2+y2﹣2cx=0截得的弦长为2,则该双曲线的标准方程为()
A. B.
C. D.
10.已知是定义在上的奇函数,且当时,.若,则的解集是()
A. B.
C. D.
11.体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是()
A.3 B.4 C.5 D.6
12.下列几何体的三视图中,恰好有两个视图相同的几何体是()
A.正方体 B.球体
C.圆锥 D.长宽高互不相等的长方体
二、填空题:本题共4小题,每小题5分,共20分。
13.下图是一个算法的流程图,则输出的x的值为_______.
14.设直线过双曲线的一个焦点,且与的一条对称轴垂直,与交于两点,为的实轴长的2倍,则双曲线的离心率为.
15.在中,角,,的对边长分别为,,,满足,,则的面积为__.
16.在中,已知,,是边的垂直平分线上的一点,则__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)有甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪元,送餐员每单制成元;乙公司无底薪,单以内(含单)的部分送餐员每单抽成元,超过单的部分送餐员每单抽成元.现从这两家公司各随机选取一名送餐员,分别记录其天的送餐单数,得到如下频数分布表:
送餐单数
38
39
40
41
42
甲公司天数
10
10
15
10
5
乙公司天数
10
15
10
10
5
(1)从记录甲公司的天送餐单数中随机抽取天,求这天的送餐单数都不小于单的概率;
(2)假设同一公司的送餐员一天的送餐单数相同,将频率视为概率,回答下列两个问题:
①求乙公司送餐员日工资的分布列和数学期望;
②小张打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,小张应选择哪家公司应聘?说明你的理由.
18.(12分)某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如下的频率分布直方图:
(1)根据频率分布直方图,求这个零件尺寸的中位数(结果精确到);
(2)若从这个零件中尺寸位于之外的零件中随机抽取个,设表示尺寸在上的零件个数,求的分布列及数学期望;
(3)已知尺寸在上的零件为一等品,否则为二等品,将这个零件尺寸的样本频率视为概率.现对生产线上生产的零件进行成箱包装出售,每箱个.企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为元.若检验,则