文档详情

2024届陕西省西安市华清中学高考考前提分数学仿真卷含解析.doc

发布:2025-02-11约6.8千字共21页下载文档
文本预览下载声明

2024届陕西省西安市华清中学高考考前提分数学仿真卷

考生请注意:

1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知,若则实数的取值范围是()

A. B. C. D.

2.已知非零向量,满足,,则与的夹角为()

A. B. C. D.

3.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线近似地刻画其相关关系,根据图形,以下结论最有可能成立的是()

A.线性相关关系较强,b的值为1.25

B.线性相关关系较强,b的值为0.83

C.线性相关关系较强,b的值为-0.87

D.线性相关关系太弱,无研究价值

4.已知抛物线:()的焦点为,为该抛物线上一点,以为圆心的圆与的准线相切于点,,则抛物线方程为()

A. B. C. D.

5.已知为等比数列,,,则()

A.9 B.-9 C. D.

6.已知,是双曲线的两个焦点,过点且垂直于轴的直线与相交于,两点,若,则△的内切圆的半径为()

A. B. C. D.

7.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为

A. B. C.2 D.

8.设全集,集合,,则()

A. B. C. D.

9.已知是虚数单位,则()

A. B. C. D.

10.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为()

A. B. C. D.

11.的展开式中有理项有()

A.项 B.项 C.项 D.项

12.小张家订了一份报纸,送报人可能在早上之间把报送到小张家,小张离开家去工作的时间在早上之间.用表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为,小张离开家的时间为,看成平面中的点,则用几何概型的公式得到事件的概率等于()

A. B. C. D.

二、填空题:本题共4小题,每小题5分,共20分。

13.已知函数,对于任意都有,则的值为______________.

14.已知是抛物线上一点,是圆关于直线对称的曲线上任意一点,则的最小值为________.

15.已知函数f(x)=axlnx﹣bx(a,b∈R)在点(e,f(e))处的切线方程为y=3x﹣e,则a+b=_____.

16.已知角的终边过点,则______.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)在中,a,b,c分别是角A,B,C的对边,并且.

(1)已知_______________,计算的面积;

请①,②,③这三个条件中任选两个,将问题(1)补充完整,并作答.注意,只需选择其中的一种情况作答即可,如果选择多种情况作答,以第一种情况的解答计分.

(2)求的最大值.

18.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若点在曲线上,点在曲线上,求的最小值及此时点的坐标.

19.(12分)一种游戏的规则为抛掷一枚硬币,每次正面向上得2分,反面向上得1分.

(1)设抛掷4次的得分为,求变量的分布列和数学期望.

(2)当游戏得分为时,游戏停止,记得分的概率和为.

①求;

②当时,记,证明:数列为常数列,数列为等比数列.

20.(12分)某工厂为提高生产效率,需引进一条新的生产线投入生产,现有两条生产线可供选择,生产线①:有A,B两道独立运行的生产工序,且两道工序出现故障的概率依次是0.02,0.03.若两道工序都没有出现故障,则生产成本为15万元;若A工序出现故障,则生产成本增加2万元;若B工序出现故障,则生产成本增加3万元;若A,B两道工序都出现故障,则生产成本增加5万元.生产线②:有a,b两道独立运行的生产工序,且两道工序出现故障的概率依次是0.04,0.01.若两道工序都没有出现故障,则生产成本为14万元;若a工序出现故障,则生产成本增加8万元;若b工序出现故障,则生产成本增加5万元;若a,b两道工序都出现故障,则生产成本增加13万元.

(1)若选择生产线①,求生产成本恰好为18万元的概率;

(2)为最大限度节约生产

显示全部
相似文档