济南大学毕业论文正文.doc
文本预览下载声明
摘 要
海涅-博雷尔有限覆盖定理是数学中的一个重要定理,在高等数学中具有非常广泛的应用,而且是实数系的几大基本定理之一,在数学理论证明中具有重要的意义。所以,研究有限覆盖定理的内容、证明、应用以及推广对我们学习高等数学具有很大的帮助。本文首先介绍开覆盖的定义,进而引入了有限覆盖定理,并简单介绍了它的推广。其次,我们用三种比较简单普遍的方法对有限覆盖定理进行了证明。然后,我们举例说明了有限覆盖定理在实数完备性,实数的连续性以及对函数的某些性质的证明中的广泛应用。最后我们开阔视野,从拓扑的观点重新看待有限覆盖定理, 并提出加强型的有限覆盖定理,让我们对有限覆盖定理有更近一步的认识。
关键词:有限覆盖定理;实数完备性;半连续函数;拓扑学;加强型有限覆盖定理
ABSTRACT
Heine - Borel limited coverage theorem is an important mathematic theorem, it is very widely used in high mathematical, and is one of several major basic theorems in real-number theory. It has the vital significance in mathematics theory proof. So, we study the the contents, proof, application and promotion of limited coverage theorem has very great help to research high mathematics. This paper firstly introduces the definition of open covers, then introduces limited covered theorem , and introduced its promotion. Then we use three simpler widespread method to proof the limited coverage theorem. Secondly,we illustrate the limited coverage theorem in the real completeness, real continuity and some properties of the function widely used. Finally we widen our vision, reconsider limited coverage theorem from the viewpoint of topological, and puts forward the theorem of the reinforced covering theorem, This enable us have a closer understanding to limited coverage theorem.
Key words:Limited coverage theorem;Real completeness;semicontinuous function;topology;Heavy-duty limited coverage theorem………………………………………………………………..…….….…………….. .I
ABSTRACT………………………………..………….……………………..…………….II
前言……….………………………………………….….…………………….……..……..1
1 有限覆盖定理及其证明....................................................................................................2
1.1 有限覆盖定理…………………………...................………….………….………..2
1.2 有限覆盖定理的证明........................……….......…………….………….………..3
2 有限覆盖定理在分析中的应用………….………………………….…..….……..…….6
2.1证明实数完备性的其它定理…………..…………………………………...……..6
2.1.1 确界原理……………………………….…….……………………...……...6
2.1.2 单调有界定理………………….……….…….……………………..……...7
2.1.3 区间套定
显示全部