涤纶常见的染色疵点产生的原因及预防措施.doc
PAGE4
涤纶常见的染色疵点产生的原因及预防措施
摘要:本文从理论角度分析了涤纶常见的染色疵点产生的原因及预防措施。首先介绍了涤纶的结构和各项性能,从而得出涤纶的一些基本特性。然后从分散染料对涤纶的染色时产生的色花、色点、色差及分散染料的泳移现象论述了涤纶常见的染色疵点,并针对这些疵点提出相应的预防措施,解决涤纶常见的染色疵点。
关键词:涤纶疵点原因预防措施
前言
涤纶自发明至今以它绝对的优势取得了快速的发展,其数量已占世界纺织纤维的1/3,约占我国纺织纤维加工量的一半,成为合成纤维中的佼佼者,是当今理想的纺织材料。它的优越性主要取决于它特定的大分子结构;不仅有刚性的苯环,而且有脂肪族的链节,使其不仅具有可熔融加工性,便于加工成纤维,而且其大分子足够的刚性,赋予纤维高的初始模量。涤纶的综合性能好,强度大、弹性好,加工性能也好,其制成的面料挺括而不易变形,洗后不用熨烫,可纯纺也可和各种天然纤维混纺或交织,广泛用于服装,家用纺织品和产业用纺织品。在服装方面涤棉混纺织物可用于衬衣、床上用品,涤纶长丝可用于外衣、运动衣,也可用以生产仿羊毛、仿丝绸、仿麻等仿天然纤维产品等。由于涤纶可以大批量生产,加工技术不断改进,生产费用降低,所以涤纶的前景一片大好。而涤纶的染色疵点对涤纶的生产制品带来了很多麻烦,所以我们必须对涤纶染色疵点有一定了解,比如涤纶染色时的色花、色点和色差等,并分析这些涤纶染色时疵点产生的原因有哪些,从而提出控制涤纶染色时疵点的预防措施,解决这些涤纶染色疵点,以减少对涤纶加工和制品带来的生产麻烦【1】。
1.涤纶和分散染料
1.1涤纶
1.1.1涤纶的结构
涤纶是聚对苯二甲酸乙二醇酯纤维的商品名称。在一般光学显微镜下观察,普通涤纶的纵向为光滑、均匀、无条痕的圆柱体,横截面为圆形。涤纶大分子链上不含有亲水性基团,且缺乏与染料分子结合的官能团,故吸湿性、染色性差,属于疏水性纤维。涤纶大分子的基本链节中含有苯环,阻碍了大分子的内旋转,使主链刚性增加。但涤纶大分子的基本链节中还含有一定数量的亚甲基,所以又有一定的柔性。刚柔相济的大分子结构使涤纶具有弹性优良、挺括、尺寸稳定性好等优异性质。涤纶大分子为线性分子,没有大的侧基和支链,分子链容易沿着纤维拉伸方向平行排列,因此分子间容易紧密地堆砌在一起,形成结晶,这使纤维具有较高的机械强度和形状稳定性。酯键的存在使涤纶分子具有一定的化学反应能力,但由于苯环和亚甲基的稳定性较好,所以涤纶的化学稳定性较好【2】。
1.1.2涤纶的性能
热性能
涤纶是热塑性纤维,其玻璃化温度为68~81℃,在玻璃化温度以下,大分子链段的活动能力小,涤纶受外力不易变形,有利于正常使用;涤纶的软化点温度为230~240℃,高于此温度,纤维开始解取向,分子链发生运动产生形变,且形变不能回复。在染整加工中,温度要控制在玻璃化温度以上,软化点温度以下。印染厂的热定性温度一般为180~220℃,染色、整理及成衣熨烫的温度均低于热定型温度,否则会因分子链活动加剧而破坏定性效果。在几种主要的合成纤维中也是最好的。涤纶在150℃下加热168小时后,其强度损失不超过3%,而锦纶在150℃受热5小时即变黄,纤维强度大幅度下降。大部分碳链纤维在高于80~90℃下受热要发生变形,其强度损失很难恢复。所以对涤棉混纺织物进行热加工时,应着重考虑棉纤维本身的耐热性。涤纶所允许的使用温度范围较大,可在-70~170℃之间使用,低温时纤维不会发脆【2】。
感,对染料溶解度提高的程度随温度的升高而下降。
结晶现象
在染液中直径较小染料颗粒优先溶解,染液达到饱和时,尚未溶解的较大的染料颗粒却能吸附从饱和染液中在结晶出来的染料,结果造成染料晶体逐渐增大。尤其在周期性的升温和冷却过程中,这种现象更加剧烈。除了上述晶体增长现象外,还会发生晶体的变异,形成比较稳定的染料聚集体。聚集体会沉积在织物上,造成织物的耐摩擦牢度下降。分散染料染液的浓度越高,染色时间越长、染色温度越高,这种现象越容易发生。在实际染色过程中,染浴中的染料因为不断上染涤纶而减少,所以晶体增长的现象并不特别严重。染液中加入阴离子型分散剂能起到稳定作用,并抑制染料晶体的增长。而过量的电解质和阳离子型物质会造成染料的聚集。
染色特性
分散染料主要是相对分子质量较小的偶氮、蒽醌等的衍生物,属于非离子型染料。分散染料的微水溶性十分重要。因为只有溶解了的染料分子(直径约为1~2nm)才能进入涤纶的微隙,并在纤维内部扩散。尽管如此,分散染料在染色时仍需要加入分散剂,以保证染料分子能均匀地分散在染液中。但是分散染料的溶解度不能过大,如果在染液中添加助溶剂,可以起缓染甚至剥色作用。分散染料与涤纶之间主要靠范德华力和氢键结合。涤纶分子为直线形,苯环上没有取代基,