文档详情

高中数学专题训练【数列求和】.pdf

发布:2025-03-27约1.12万字共4页下载文档
文本预览下载声明

数列求和

1.数列13褪,7白…,(2-1)+*•的前〃项和S的值等于)

-11

A.n^+1-^n8.2〃2-九+1-呼

C.n^+1-n_1D.〃2-〃+l-弥

2z

2.在数列{〃〃}中,。1=-60,。〃+1=斯+3,则©|+|。2|+一十|。30|二)

A.-495B.765

C.1080D.3105

3.已知数列斯{}的前〃项和%满足5八+S^=S〃+侬其中根,〃为正整数,且。1=1,则i等于)

A.lB.9

C.10D.55

1

4.已知函数/%)二犬的图象过点(4,2),令,=4£N*.记数列斯{}的前n项和为S小贝j!S2018等于

八71十k)rj\Jl)

()______

A.VTOTS-IB.V2018+1

C.V2019-1D.V2019+1

111

5.已知数列%{}中,斯=2+1,则一!一+-^+…+――=)

aa

。3一。2n+l~n

A.1+方B.1-2

1

C.l-£D.l+2〃

6.设数列斯{}的前〃项和为斗,的=2,若8+1=平斗,则数列总{1的前2018项和为.

7.已知等差数列诙{}满足:〃5=11,。2+〃6=18.

(1)求数列念{}的通项公式;

⑵若为=斯+2〃,求数列仇{}的前n项和S〃.

8.设等差数列火{}的公差为,前〃项和为S〃,等比数列为{}的公比为q,已知=的力2=2,q=d,Si=lOO.

(1)求数列诙{},为{}的通项公式;

(2)当d>l时,记Gk詈,求数列金{}的前〃项和Tn.

9.S〃为数列4{〃}的前〃项和,已知斯>0,。:+2斯=4S〃+3.

(1)求斯{}的通项公式;

⑵设bn~,求数列为{}的前几项和.

tt

1n+1

10.如果数歹U1,1+2,1+2+4,・・・,1+2+22+・・・+2〃-1・・的前

显示全部
相似文档