基于机器学习算法和ARIMA模型的旱地春小麦产量预测.docx
基于机器学习算法和ARIMA模型的旱地春小麦产量预测
目录
内容概要................................................3
1.1研究背景...............................................4
1.2研究目的和意义.........................................4
1.3文章结构安排...........................................5
相关理论和方法..........................................6
2.1旱地春小麦产量预测的意义...............................8
2.2机器学习算法概述.......................................9
2.2.1机器学习基本概念....................................11
2.2.2常见机器学习算法....................................12
2.3ARIMA模型概述.........................................14
2.3.1ARIMA模型基本原理...................................16
2.3.2ARIMA模型建模步骤...................................17
数据准备与处理.........................................18
3.1数据来源..............................................20
3.2数据预处理............................................21
3.2.1数据清洗............................................22
3.2.2数据标准化..........................................24
3.3特征工程..............................................25
3.3.1特征选择............................................27
3.3.2特征提取............................................28
模型构建与优化.........................................30
4.1机器学习模型构建......................................31
4.1.1模型选择............................................32
4.1.2模型训练与验证......................................34
4.2ARIMA模型构建.........................................36
4.2.1模型参数估计........................................37
4.2.2模型诊断与检验......................................39
4.3模型融合策略..........................................39
4.3.1融合方法选择........................................41
4.3.2融合模型构建........................................42
实验与分析.............................................43
5.1实验设计..............................................46
5.2机器学习模型性能评估..................................47
5.2.1模型准确率分析......................................49
5.2.2模型稳定性分析......................................50
5.3ARIMA模型性能评估.....................................51
5.3.1