文档详情

《二次根式》-典型分类练习题.doc

发布:2018-11-10约5.08千字共10页下载文档
文本预览下载声明
. PAGE 12 ... 《二次根式》分类练习题 知识点一:二次根式的概念 【知识要点】 二次根式的定义: 形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义. 【典型例题】 【例1】下列各式1), 其中是二次根式的是_________(填序号). 举一反三: 1、下列各式中,一定是二次根式的是( ) A、 B、 C、 D、 2、在、、、、中是二次根式的个数有______个 【例2】若式子有意义,则x的取值范围是 .[来源:学*科*网Z*X*X*K] 举一反三: 1、使代数式有意义的x的取值范围是( ) A、x3 B、x≥3 C、 x4 D 、x≥3且x≠4 2、使代数式有意义的x的取值范围是 3、如果代数式有意义,那么,直角坐标系中点P(m,n)的位置在(  ) A、第一象限  B、第二象限  C、第三象限  D、第四象限 【例3】若y=++2009,则x+y= 解题思路:式子(a≥0), ,y=2009,则x+y=2014 举一反三: 1、若,则x-y的值为( ) A.-1 B.1 C.2 D.3 2、若x、y都是实数,且y=,求xy的值 3、当取什么值时,代数式取值最小,并求出这个最小值。 已知a是整数部分,b是 的小数部分,求的值。 若的整数部分是a,小数部分是b,则 。 若的整数部分为x,小数部分为y,求的值. 知识点二:二次根式的性质 【知识要点】 1. 非负性:是一个非负数. 注意:此性质可作公式记住,后面根式运算中经常用到. 2. . 注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式: 3. 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替. (3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外. 4. 公式与的区别与联系 (1)表示求一个数的平方的算术根,a的范围是一切实数. (2)表示一个数的算术平方根的平方,a的范围是非负数. (3)和的运算结果都是非负的. 【典型例题】 【例4】若则 . 举一反三: 1、若,则的值为 。 2、已知为实数,且,则的值为( ) A.3 B.– 3 C.1 D.– 1 3、已知直角三角形两边x、y的长满足|x2-4|+=0,则第三边长为______. 4、若与互为相反数,则。 (公式的运用) 【例5】 化简:的结果为( ) A、4—2a B、0 C、2a—4 D、4 举一反三: 在实数范围内分解因式: = ;= 化简: 已知直角三角形的两直角边分别为和,则斜边长为 (公式的应用) 【例6】已知,则化简的结果是 A、 B、 C、 D、 举一反三: 1、根式的值是( ) A.-3 B.3或-3 C.3  D.9 2、已知a0,那么│-2a│可化简为( ) A.-a B.a C.-3a D.3a 3、若,则等于( ) A. B. C. D. 4、若a-3<0,则化简的结果是( ) (A) -1 (B) 1 (C) 2a-7 (D) 7-2a 5、化简得( ) (A) 2 (B) (C)-2  (D) 6、当a<l且a≠0时,化简= . 7、已知,化简求值: 【例7】如果表示a,b两个实数的点在数轴上的位置如图所示,那么化简│a-b│+ 的结果等于( ) A.-2b B.2b C.-2a D.2a 举一反三:实数在数轴上的位置如图所示:化简:. 【例8】化简的结果是2x-5,则x的取值范围是( ) (A)x为任意实数 (B)≤x≤4 (C) x≥1 (D)x≤1 举一反三:若代数式的值是常数,则的取值范围是(   ) A. B. C. D.或 【例9】如果,那么a的取值范围是( ) A. a=0 B. a=1 C. a=0或a=
显示全部
相似文档