云南省曲靖市西南名校2025届高考冲刺押题(最后一卷)数学试卷含解析.doc
云南省曲靖市西南名校2025届高考冲刺押题(最后一卷)数学试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知三棱柱()
A. B. C. D.
2.已知函数,其中,记函数满足条件:为事件,则事件发生的概率为
A. B.
C. D.
3.已知数列满足,且,则的值是()
A. B. C.4 D.
4.已知,满足条件(为常数),若目标函数的最大值为9,则()
A. B. C. D.
5.函数在的图象大致为()
A. B.
C. D.
6.如图,四面体中,面和面都是等腰直角三角形,,,且二面角的大小为,若四面体的顶点都在球上,则球的表面积为()
A. B. C. D.
7.的展开式中的一次项系数为()
A. B. C. D.
8.已知正三棱锥的所有顶点都在球的球面上,其底面边长为4,、、分别为侧棱,,的中点.若在三棱锥内,且三棱锥的体积是三棱锥体积的4倍,则此外接球的体积与三棱锥体积的比值为()
A. B. C. D.
9.已知抛物线:,点为上一点,过点作轴于点,又知点,则的最小值为()
A. B. C.3 D.5
10.已知定义在上的奇函数满足:(其中),且在区间上是减函数,令,,,则,,的大小关系(用不等号连接)为()
A. B.
C. D.
11.幻方最早起源于我国,由正整数1,2,3,……,这个数填入方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫阶幻方.定义为阶幻方对角线上所有数的和,如,则()
A.55 B.500 C.505 D.5050
12.在复平面内,复数(,)对应向量(O为坐标原点),设,以射线Ox为始边,OZ为终边旋转的角为,则,法国数学家棣莫弗发现了棣莫弗定理:,,则,由棣莫弗定理可以导出复数乘方公式:,已知,则()
A. B.4 C. D.16
二、填空题:本题共4小题,每小题5分,共20分。
13.已知双曲线的一条渐近线为,则焦点到这条渐近线的距离为_____.
14.某市高三理科学生有名,在一次调研测试中,数学成绩服从正态分布,已知,若按成绩分层抽样的方式取份试卷进行分析,则应从分以上的试卷中抽取的份数为__________.
15.若复数满足,其中是虚数单位,是的共轭复数,则________.
16.已知随机变量服从正态分布,若,则_________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知数列的各项均为正数,为其前n项和,对于任意的满足关系式.
(1)求数列的通项公式;
(2)设数列的通项公式是,前n项和为,求证:对于任意的正数n,总有.
18.(12分)在底面为菱形的四棱柱中,平面.
(1)证明:平面;
(2)求二面角的正弦值.
19.(12分)如图,在棱长为的正方形中,,分别为,边上的中点,现以为折痕将点旋转至点的位置,使得为直二面角.
(1)证明:;
(2)求与面所成角的正弦值.
20.(12分)已知函数.
(1)当时,求不等式的解集;
(2)若对任意成立,求实数的取值范围.
21.(12分)已知曲线的参数方程为(为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)若过点的直线与交于,两点,与交于,两点,求的取值范围.
22.(10分)已知,,,,证明:
(1);
(2).
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【解析】
因为直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=
2、D
【解析】
由得,分别以为横纵坐标建立如图所示平面直角坐标系,由图可知,.
3、B
【解析】
由,可得,所以数列是公比为的等比数列,
所以,则,
则,故选B.
点睛:本题考查了等比数列的概念,等比数列的通项公式及等比数列的性质的应用,试题有一定的技巧,属于中档试题,解决这类问题的关键在于熟练掌握等比数