云南省曲靖市宣威市第五中学2025届高考仿真卷数学试卷含解析.doc
云南省曲靖市宣威市第五中学2025届高考仿真卷数学试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.记等差数列的公差为,前项和为.若,,则()
A. B. C. D.
2.设,,则的值为()
A. B.
C. D.
3.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为()
A. B. C. D.
4.已知,则()
A. B. C. D.
5.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()
A.23 B.21 C.35 D.32
6.()
A. B. C.1 D.
7.设函数在定义城内可导,的图象如图所示,则导函数的图象可能为()
A. B.
C. D.
8.百年双中的校训是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味运动会中有这样的一个小游戏.袋子中有大小、形状完全相同的四个小球,分别写有“仁”、“智”、“雅”、“和”四个字,有放回地从中任意摸出一个小球,直到“仁”、“智”两个字都摸到就停止摸球.小明同学用随机模拟的方法恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“仁”、“智”、“雅”、“和”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数:
141432341342234142243331112322
342241244431233214344142134412
由此可以估计,恰好第三次就停止摸球的概率为()
A. B. C. D.
9.已知若(1-ai)(3+2i)为纯虚数,则a的值为()
A. B. C. D.
10.设抛物线的焦点为F,抛物线C与圆交于M,N两点,若,则的面积为()
A. B. C. D.
11.三棱锥的各个顶点都在求的表面上,且是等边三角形,底面,,,若点在线段上,且,则过点的平面截球所得截面的最小面积为()
A. B. C. D.
12.某工厂只生产口罩、抽纸和棉签,如图是该工厂年至年各产量的百分比堆积图(例如:年该工厂口罩、抽纸、棉签产量分别占、、),根据该图,以下结论一定正确的是()
A.年该工厂的棉签产量最少
B.这三年中每年抽纸的产量相差不明显
C.三年累计下来产量最多的是口罩
D.口罩的产量逐年增加
二、填空题:本题共4小题,每小题5分,共20分。
13.在的展开式中,所有的奇数次幂项的系数和为-64,则实数的值为__________.
14.设,满足约束条件,若的最大值是10,则________.
15.已知等差数列的前n项和为,,,则=_______.
16.函数在内有两个零点,则实数的取值范围是________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(1)讨论的单调性;
(2)若函数在区间上的最小值为,求m的值.
18.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)设直线与曲线交于,两点,求;
(Ⅱ)若点为曲线上任意一点,求的取值范围.
19.(12分)已知数列的前项和为,.
(1)求数列的通项公式;
(2)若,为数列的前项和.求证:.
20.(12分)在锐角三角形中,角的对边分别为.已知成等差数列,成等比数列.
(1)求的值;
(2)若的面积为求的值.
21.(12分)设
(1)当时,求不等式的解集;
(2)若,求的取值范围.
22.(10分)已知椭圆:过点,过坐标原点作两条互相垂直的射线与椭圆分别交于,两点.
(1)证明:当取得最小值时,椭圆的离心率为.
(2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【解析】
由,和,可求得,从而求得和,再验证选项.
【详解】
因为,,
所以解得,